На правах рукописи

Junap

ГАГАРИН ПАВЕЛ ГЕОРГИЕВИЧ

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ СОЕДИНЕНИЙ И ТВЕРДЫХ РАСТВОРОВ ОКСИДОВ ЛАНТАНОИДОВ И ДИОКСИДА ЦИРКОНИЯ

02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва - 2018

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)

Научный руководитель:	Гуськов Владимир Николаевич
	доктор химических наук, ведущий научный сотрудник
	ИОНХ РАН

Официальные оппоненты:

Дробот Дмитрий Васильевич доктор химических наук, профессор, заслуженный деятель науки РФ МИРЭА-РТУ, Институт тонких химических технологий им. М.В. Ломоносова

Зломанов Владимир Павлович доктор химических наук, профессор

Химический факультет Московский государственный университет им. М.В. Ломоносова

Ведущая организация:

Институт химической физики им. Н.Н. Семенова РАН

Защита состоится «18» октября 2018 г. в 11 часов на заседании диссертационного совета Д 002.021.02 при ИОНХ РАН по адресу 119991 г. Москва, ГСП-1, Ленинский пр-т, д. 31.

С диссертацией можно ознакомиться в библиотеке Института общей и неорганической химии им. Н.С. Курнакова РАН и на сайте <u>www.igic.ras.ru</u>

Автореферат разослан «12» сентября 2018 г.

Ученый секретарь диссертационного совета

кандидат химических наук

housed

М.А. Рюмин

ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В течение последних десятилетий повышенный интерес представляет разработка химически инертных тугоплавких материалов для создания различных функциональных керамик, огнеупоров и термобарьерных покрытий, способных работать при высоких температурах. По жаростойкости в окислительной атмосфере керамика наиболее устойчива, поэтому высокотемпературные оксидные оксидная материалы, способы их получения и свойства являются объектами особого внимания. С керамических теплозащитных разработкой новых материалов, превосходящих по функциональным свойствам стабилизированный иттрием диоксид циркония (YSZ), связывают повышение эффективности энергетических установок. Анализ литературных данных по свойствам соединений и твердых растворов оксидов лантаноидов и диоксида циркония показывает, что по химической стойкости, низкой теплопроводности, термической стабильности и другим характеристикам материалы на основе этих соединений могут рассматриваться как альтернатива (YSZ). Высокая практическая значимость этих веществ обеспечивается отсутствием фазовых переходов в широком температурном интервале. Помимо подходящих для создания термобарьерных слоев теплофизических свойств, они рассматриваются как новые твердые электролиты с высокой кислород-ионной проводимостью, проявляют диэлектрические, пьезо- или ферроэлектрические, а также флюоресцентные и фосфоресцентные свойства, могут быть использованы как материалы электронной техники, а также как катализаторы. Их радиационная стойкость может быть использована для иммобилизации радиоактивных отходов и пр. Учитывая не слишком широкую доступность большинства лантаноидов, приоритетным направлением применения следует считать пленки и покрытия. Перспективы использования оксидных материалов, как в виде объемных образцов, так и пленок, особенно в высокотемпературных условиях, требуют анализа их устойчивости в контакте с подложкой или с окружающими твердыми, жидкими и газообразными средами. Получение экспериментальных равновесных данных в этих условиях, и, прежде всего, при высоких температурах, представляет серьезную проблему, поэтому наиболее предпочтительно проведение термодинамического моделирования. Основу для таких расчетов составляют данные по температурной зависимости теплоемкости, энтропии, приращения энтальпии и свободной энергии Гиббса, однако необходимые для проведения таких расчетов и оценок термодинамические свойства соединений и твердых растворов диоксида циркония и оксидов лантаноидов изучены недостаточно полно, а для ряда веществ и вовсе отсутствуют.

Таким образом, <u>цель работы</u> состоит в разработке термодинамических основ получения новых высокотемпературных функциональных материалов на основе соединений

3

и твердых растворов диоксида циркония и оксидов лантаноидов.

В качестве <u>объектов исследования</u> были выбраны поликристаллические цирконаты лантаноидов со структурой пирохлора $Ln_2Zr_2O_7$ (Ln = La-Gd), LaLnZr₂O₇ (Ln = Nd, Sm, Gd, Dy) и твердые растворы со структурой флюорита $Ln_2O_3 \cdot 2ZrO_2$ (Ln = Tb-Tm).

Достижение указанной цели включает в себя решение следующих задач:

- 1. Синтез однофазных образцов соединений и твердых растворов диоксида циркония и оксидов лантаноидов
- 2. Идентификация образцов: рентгенофазовый анализ (РФА), дифференциально сканирующая калориметрия (ДСК), рентгеноэлектронная спектроскопия РЭС.
- Изучение термического поведения цирконатов и твердых растворов в диапазоне температур 300-1700 К методами ДСК и РФА.
- 4. Измерение изобарной теплоемкости *C*_р методами адиабатической (10-340 K) и дифференциальной сканирующей калориметрии (>340 K).
- 5. Сглаживание экспериментальных значений теплоемкости и расчет термодинамических функций: энтропии, приращения энтальпии и приведенной энергии Гиббса.

Научная новизна работы.

В результате проведенной работы были

- определены особенности формирования кристаллических структур цирконатов лантаноидов Ln₂Zr₂O₇ (La-Gd), твердых растворов Ln₂O₃·2ZrO₂ (Tb-Tm) и твердых растворов LaLnZr₂O₇ (Ln=Nd, Sm, Gd, Dy) при использовании метода обратного осаждения и необходимые условия для получения цирконатов со структурой пирохлора;

- измерены значения изобарной теплоемкости 14 соединений и твердых растворов методами адиабатической (5-340 K) и дифференциальной сканирующей калориметрии (340-1400 K), из них впервые значения теплоемкости получены для цирконата празеодима (10-1400 K), цирконата самария (5-60 K), цирконата гадолиния (340-1400 K) и всех двойных и тройных твердых растворов при 10-1400 K;

- по сглаженным значениям теплоемкости проведен расчет термодинамических функций: энтропию, приращение энтальпии и приведенную энергию Гиббса;

 проведена оценка величины аномального вклада в теплоемкость (аномалия Шоттки) для Sm₂Zr₂O₇, Dy₂O₃·2ZrO₂, Ho₂O₃·2ZrO₂, Er₂O₃·2ZrO₂;

- определена температурная зависимость (290-1170 К) параметров кубической ячейки твердого раствора Tm₂O₃·2ZrO₂ (флюорит) и рассчитан линейный коэффициент термического

расширения.

Практическая значимость работы. Проведенные исследования на синтезированных и идентифицированных образцах соединений и твердых растворов диоксида циркония и оксидов всего ряда лантаноидов (за исключением церия, прометия, иттербия и лютеция) позволили определить температурные зависимости теплоемкости И рассчитать термодинамические функции этих веществ в интервале температур ~5-1400 К. Полученный массив термодинамических данных может быть использован для моделирования химических процессов с участием изученных веществ, разработки новых функциональных материалов, оценки их устойчивости в экстремальных условиях, расчета теплофизических величин и внесен в термодинамические базы данных. Подтверждено отсутствие фазовых переходов с изменением структурных параметров в изученном температурном интервале, что важно при использовании этих веществ в термоциклических и высокотемпературных процессах.

Основные положения выносимые на защиту:

- Особенности синтеза методом обратного осаждения кристаллических равновесных цирконатов лантаноидов со структурой пирохлора La₂Zr₂O₇ (La-Gd), твердых растворов со структурой флюорита состава Ln₂O₃·2ZrO₂ (Tb-Tm) и твердых растворов со структурой пирохлора LaLnZr₂O₇ (Nd, Sm, Gd, Dy) и необходимые условия получения соединений со структурой пирохлора.
- 2. Подтверждение отсутствия структурных превращений изученных веществ в температурном интервале ~5-1700 К.
- 3. Результаты измерения изобарной теплоемкости методом адиабатической калориметрии при низких (5-340 K) и методом ДСК при высоких температурах (340-1400 K).
- Результаты расчета термодинамических функций соединений и твердых растворов диоксида циркония и оксидов лантаноидов со структурами флюорита и пирохлора – приращение энтальпии, энтропия и приведенная энергия Гиббса, а также стандартные свойства при 298.15 К.

Личный вклад автора:

Основу диссертационной работы составляют результаты научных исследований, проведенных автором за время обучения в очной аспирантуре ИОНХ РАН в лаборатории термического анализа и калориметрии за период 2014-2018 гг.

Постановка направления и задач исследований, планирование, синтез, идентификация образцов и проведение измерений изобарной теплоемкости с последующим расчетом

5

термодинамических функций происходили при непосредственном участии диссертанта. Личный вклад автора состоит также в анализе литературы, интерпретации полученных данных и подготовке их к публикации в виде научных статей, а также в форме докладов на научных семинарах и конференциях.

Диссертация соответствует паспорту специальности 02.00.04 – физическая химия в пункте 2. Экспериментальное определение термодинамических свойств веществ, расчет термодинамических функций простых и сложных систем, в том числе на основе методов статистической термодинамики, изучение термодинамики фазовых превращений и фазовых переходов.

Работа выполнена в лаборатории термического анализа и калориметрии ИОНХ РАН при финансовой поддержке Российского фонда фундаментальных исследований (проект 15-03-04388).

Апробация работы. Результаты работы были представлены на конференциях: V Конференция молодых ученых по общей и неорганической химии ИОНХ РАН (Москва, 2015); 10-й Всероссийский симпозиум с международным участием Термодинамика и материаловедение (Санкт-Петербург, 2015); VI Конференция молодых ученых по общей и неорганической химии ИОНХ РАН (Москва, 2016); VII Конференция молодых ученых по общей и неорганической химии ИОНХ РАН (Москва, 2017); Труды научного семинара памяти профессора И.Л. Ходаковского, сборник материалов (Дубна, 2017); VIII Конференция молодых ученых по общей и неорганической химии ИОНХ РАН (Москва, 2018); XX International conference on chemical thermodynamics in Russia (Nizhny Novgorod, 2015); International conference on thermal analysis and calorimetry in Russia (RTAC-2016) (St. Petersburg, 2016); XXI International conference on chemical thermodynamics in Russia (RCCT-2017) (Novosibirsk, 2017); 4th Central and eastern Europe conference on thermal analysis and calorimetry (CEEC-TAC4) (Chisinau, Moldova, 2017); Всероссийская конференция с международным участием «Химия твердого тела и функциональные материалы» и XII Всероссийского симпозиума с международным участием «Термодинамика И материаловедение» (Санкт-Петербург, 2018); VIII Международная научная конференция «Химическая термодинамика и кинетика» (Тверь, 2018).

Публикации по теме работы. Материалы диссертации опубликованы в 16 работах, в 3 статьях в рецензируемых журналах, индексируемых в Web of science, и входящих в Перечень ВАК РФ и 13 тезисах докладов на российских и международных конференциях.

6

<u>Структура и объем работы</u>. Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, выводов, списка цитируемой литературы и двух приложений. Диссертация изложена на 156 страницах, содержит 43 таблицы и 86 рисунков. Список литературы содержит 110 ссылок.

СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы диссертационной работы и выбор объектов, сформулированы цель и задачи. Изложены научная новизна и практическая значимость исследования.

В обзоре литературы рассмотрены фазовые равновесия в системах Ln_2O_3 -ZrO₂ (Ln=La-Lu) и характер существующих твердых растворов и соединений в области температур 1273-3200 К. Отмечено, что равновесные фазовые диаграммы ниже 1273 К практически не изучены из-за низкой скорости установления равновесий. В этих системах образуются пирокие области кубических твердых растворов, в пределах которых кристаллизуются соединения $Ln_2Zr_2O_7$ структурного типа пирохлора в случае легких лантаноидов (La-Gd). Образование этого типа соединений происходит необратимо при нагревании выше температур 1700-1800 К, в противном случае образуется метастабильный кубический твердый раствор структурного типа флюорита. В системах с участием тяжелых лантаноидов (Tb-Tm) соединений Ln₂Zr₂O₇ не образуется, и протяженный кубический твердый растворы распадаются на диоксид циркония и соединение $Ln_4Zr_3O_{12}$. В обзоре литературы приведены имеющиеся данные по экспериментальным исследованиям изобарной теплоемкости при низких (0-340 K) и высоких (>340 K) температурах для соединений $Ln_2Zr_2O_7$ и их термодинамические свойства.

В экспериментальной части описан синтез методом обратного осаждения соединений Ln₂Zr₂O₇ (La-Gd) и твердых растворов Ln₂O₃·2ZrO₂ (Tb-Tm), LaLnZr₂O₇ (Ln=Nd, Sm, Gd, Dy) с последующим высокотемпературным отжигом. Для идентификации образцов проводили рентгенофазовый анализ на автоматическом порошковом дифрактометре D8 Advance (Bruker, Германия). Для интерпретации результатов эксперимента использовали программу Bruker EVA и базу данных ICDD PDF-2. Термические свойства изучали с помощью термогравиметрического анализа и дифференциальной сканирующей калориметрии на установке синхронного термического анализатора STA 449 F1 Jupiter (NETZSCH). Для определения элементного состава образцов использовали метод энерго-

дисперсионной спектрометрии на растровом электронном микроскопе JSM-6480LV (JEOL, Япония) с приставкой для энерго-дисперсионной спектрометрии INCA (Oxford, UK). Микрофотографии изучаемых образцов получали с помощью полевого эмиссионного растрового электронного микроскопа JSM-6700F с приставкой для энерго-дисперсионной спектрометрии JED-2300F (JEOL, Япония). Температурную зависимость теплоемкости соединений и твердых растворов диоксида циркония и оксидов лантаноидов в области температур 10-350 К измеряли методом адиабатической калориметрии с использованием автоматизированной теплофизической установки БКТ-3 (АОЗТ «Термис»). Теплоемкость в области высоких температур была изучена методом дифференциальной сканирующей калориметрии с использованием синхронного термического анализатора STA 449 F1 Jupiter (NETZSCH) в платиновых тиглях с крышкой. Измерения удельной теплоемкости образца цирконата самария в области температур 2-10 К проведены на установке системы PPMS фирмы Quantum Design. Измерение температурной зависимости (298-1173 К) параметра элементарной ячейки твердого раствора Tm₂O₃·2ZrO₂ проводили методом рентгеновской дифракции на приборе Shimadzu с приставкой НА-1001 на монохроматизированном излучении СиК_α.

Результаты и их обсуждение. Методом обратного осаждения были приготовлены прекурсоры для получения соединений и твердых растворов оксидов лантаноидов и диоксида циркония состава $Ln_2O_3 \cdot 2ZrO_2$. Часть полученных прекурсоров подвергали изучению методом ТГ-ДСК в интервале температур 290-1720 К для определения механизма протекания процессов дегидратации и взаимодействия компонентов. Типичные кривые ТГ-ДСК для аморфных прекурсоров на примере цирконата неодима приведена на рис. 1. Основное удаление воды из обезвоженных при 368 К образцов происходит в интервале 370-670 К, о чем свидетельствует потеря массы ~15%. Дальнейшее нагревание приводит к взаимодействию компонентов при 970-1170 К и появлению структурных признаков образования кубической фазы типа флюорита (рис. 2). После нагревания до 1723 К прекурсоров, содержащих La, Pr и Nd, наблюдается образования пирохлоров требуется более высокая температура (до 1820 К).

Рис. 1. Кривые ТГ-ДСК аморфного прекурсора цирконата неодима.

Рис. 2. Формирование структурного типа пирохлора у цирконата неодима: (а) - аморфный прекурсор, (б) - структурный тип флюорита после отжига при 1273 K, (в) - проявление структурного типа пирохлора после нагревания до 1723 K.

Особое внимание обращали на морфологию образцов: для того, чтобы исключить влияние размерного фактора на термодинамические свойства при измерениях теплоемкости, необходимо было использовать кристаллические образцы, не являющиеся наноразмерными (таковыми принято считать фазы с линейными размерами ≥ 100 нм).

Морфологию изучали с помощью электронной микроскопии (рис. 3), результаты

которой сравнивали с расчетами размеров областей когерентного рассеяния по уравнению Шеррера.

Рис. 3. Морфология цирконата самария, (а) - отжиг при 1273 К (флюорит); (б) - отжиг 1773 К (пирохлор).

Параметры кристаллических решеток синтезированных образцов и литературные данные, как флюоритов, так и пирохлоров приведены в табл. 1.

Таблица 1. Параметры кристаллических р	ешеток синтезированных	образцов и литературные
данные.		

Состав	Стр. тип	Параметр <i>а</i> , Å	Параметр <i>a</i> , Å(литература)
$La_2Zr_2O_7$	пирохлор	10.801(9)	10.80470(6) [1]
$Pr_2Zr_2O_7$	пирохлор	10.699(4)	10.709(9) [2]
$Nd_2Zr_2O_7$	пирохлор	10.664(4)	10.666(1) [3]
$Sm_2Zr_2O_7$	пирохлор	10.577(5)	10.5789(3) [4]
$Sm_2O_3 \cdot 2ZrO_2$	флюорит	5.287(3)	-
$Eu_2Zr_2O_7$	пирохлор	10.544(3)	10.5393(8) [5]
$Eu_2O_3 \cdot 2ZrO_2$	флюорит	5.256(5)	-
$Gd_2Zr_2O_7$	пирохлор	10.518(8)	10.5169(3) [6]
$Gd_2O_3 \cdot 2ZrO_2$	флюорит	5.263(5)	5.2618(2) [7]
$Tb_2O_3 \cdot 2ZrO_2$	флюорит	5.237(3)	5.244(5) [8]
$Dy_2O_3 \cdot 2ZrO_2$	флюорит	5.222(4)	5.21 [9]
$Ho_2O_3 \cdot 2ZrO_2$	флюорит	5.213(4)	5.20 [10]
$Er_2O_3 \cdot 2ZrO_2$	флюорит	5.190(4)	5.19 [11]
$Tm_2O_3 \cdot 2ZrO_2$	флюорит	5.178(4)	5.170 [12]
$Yb_2O_3 \cdot 2ZrO_2$	флюорит	5.153(6)	5.160(2) [13]
LaNdZr ₂ O ₇	пирохлор	10.727(5)	10.735 (расч.)
LaSmZr ₂ O ₇	пирохлор	10.696(4)	10.691 (расч.)
LaGdZr ₂ O ₇	пирохлор	10.665(5)	10.660 (расч.)
LaDyZr ₂ O ₇	пирохлор	10.645(5)	10.612 (расч.)
$Yb_4Zr_3O_{12}^*$	ромбоэдр.	a=b=9.650(5), c=8.948(5)	a=b=9.6570(8), c=9.0235[14]
$Lu_4Zr_3O_{12}^*$	ромбоэдр.	a=b=9.642(5), c=8.943(4)	a=b=9.636(1), c=8.9432 [15]

*) Термические и термодинамические свойства в данной работе не изучали.

Проведенные на приготовленных образцах ДСК исследования показали отсутствие полиморфных превращений во всем температурном интервале 5-1700 К.

Для твердого раствора Tm₂O₃·2ZrO₂ (флюорит) выполнены измерения зависимости параметра кубической решетки от температуры и рассчитаны линейные коэффициенты термического расширения (КТР). Параметр кристаллической ячейки *a*, коэффициент линейного термического расширения, рассчитанные по уравнениям:

$$\boldsymbol{\alpha}_{i}, \mathbf{K}^{-1} = (1/a_{T}) \cdot (\mathbf{d}a_{T}/\mathbf{d}T) \tag{1}$$

и относительное линейное термическое расширение:

$$TE, \% = 100\% \cdot (a_T - a_{298})/a_{298}$$
(2)

приведены в табл. 2. В зависимости от температуры и удовлетворительно описываются уравнениями:

$$\alpha_{i}, \mathrm{K}^{-1} = (9.273 \pm 0.0137) + (3.61 \pm 0.04) \cdot 10^{-3}T - (8.69 \pm 2.76) \cdot 10^{-8}T^{2}$$
(3)
$$TE, \% = -(0.2935 \pm 0.0102) + (9.596 \pm 0.305) \cdot 10^{-5}T + (9.306 \pm 2.05) \cdot 10^{-8}T^{2}$$
(4)

Таблица 2. Параметр кристаллической решетки a, коэффициент линейного термического расширения a_i и относительное линейное термическое расширение *TE* в зависимости от температуры.

<i>Т</i> , К	а, нм	$\alpha_i \cdot 10^{-6}, \mathrm{K}^{-1}$	<i>TE</i> , %
298	0.5186	10.340	0.00
573	0.5203	11.319	0.29
773	0.5214	12.008	0.50
973	0.5226	12.704	0.73
1173	0.5238	13.390	0.96

Изобарную теплоемкость измеряли для равновесных образцов пирохлоров (La-Gd), двойных цирконатов (LaSm, LaGd, LaDy) и флюоритов (Tb-Tm). В случае иттербия и лютеция приготовленные составы $Ln_2O_3 \cdot 2ZrO_2$ распадаются на диоксид циркония и, так называемые δ -фазы, $Ln_4Zr_3O_{12}$, которые не исследовали. Низкотемпературные теплоемкости остальных соединений и твердых растворов (5÷10–340 K) были измерены методом адиабатической калориметрии, сглажены и приведены в табличной форме вместе с рассчитанными термодинамическими функциями: энтропию, изменение энтальпии и приведенную энергию Гиббса. Расчет проводили без учета возможного существования низкотемпературных магнитных переходов из-за отсутствия экспериментальных данных по теплоемкости и термодинамических функций при температуре 298.15 К приведены в табл. 3.

Состав	Стр. тип	$C^{0}(T)$	r ⁰ (T)	$\Phi^0(T)$	$H^{0}(T) = H^{0}(0)$
		$C_p(1)$	3(1)	$\Psi(1)$	II(1) - II(0)
		Дж/(моль·К)			Дж/моль
$La_2Zr_2O_7$	пирохлор	223.2±0.4	237.6±0.5	108.9 ± 0.2	38360±80
$Pr_2Zr_2O_7$	пирохлор	242.0 ± 0.5	248.4 ± 0.5	113.4 ± 0.2	40260±80
$Nd_2Zr_2O_7$	пирохлор	229.5 ± 0.5	256.4 ± 0.5	119.6 ± 0.2	40790 ± 80
$Sm_2Zr_2O_7$	пирохлор	224.7±0.4	248.5±0.5	118.4 ± 0.2	38770±80
$Eu_2Zr_2O_7$	пирохлор	236.5±0.4	247.1±0.5	112.0±0.2	40340±80
$Gd_2Zr_2O_7$	пирохлор	221.5±0.5	233.5±0.5	109.3±0.2	37185±80
$Tb_2O_3 \cdot 2ZrO_2$	флюорит	224.7±0.4	242.2±0.5	112.8±0.2	$38580{\pm}80$
$Dy_2O_3 \cdot 2ZrO_2$	флюорит	229.9±0.5	249.4±0.5	115.3±0.2	39980±80
$Ho_2O_3 \cdot 2ZrO_2$	флюорит	224.7±0.4	249.1±0.5	117.2±0.2	39320±80
$Er_2O_3 \cdot 2ZrO_2$	флюорит	214.1±0.4	245.1±0.5	120.1±0.2	37270±70
$Tm_2O_3 \cdot 2ZrO_2$	флюорит	227.2±0.5	249.4±0.5	117.9±0.2	39220±80
LaSmZr ₂ O ₇	пирохлор	224.6±0.4	246.9±0.5	115.9±0.2	39070±80
LaGdZr ₂ O ₇	пирохлор	222.1±0.4	237.8±0.5	110.6±0.2	37940±80
LaDyZr ₂ O ₇	пирохлор	232.3±0.5	245.7±0.5	113.1±0.2	39540±80

Таблица 3. Стандартные термодинамические свойства исследованных образцов, 298.15 К.

Изобарную теплоемкость выше 340 К измеряли методом ДСК, аппроксимировали уравнением Майера-Келли, коэффициенты которого приведены в табл. 4.

		2	
Таблица 4 Коэффициенты у	ипавнения Майера-Келли	$C = a + b \cdot T + c/T^2$	(340-1400 K)
	ypublicitin withtepu iteniiti.	$c_p = u + v I + c/I$	$(3+0,1+00,1\mathbf{x})$.

Состав	Стр. тип	а	b	С
$La_2Zr_2O_7$	пирохлор	254.040	0.039840	-3893980
$Pr_2Zr_2O_7$	пирохлор	270.999	0.012357	-2727627
$Nd_2Zr_2O_7$	пирохлор	280.474	0.003072	-4880963
$Sm_2Zr_2O_7$	пирохлор	310.980	0.002660	-7765115
$Eu_2Zr_2O_7$	пирохлор	276.014	0.045072	-5032875
$Gd_2Zr_2O_7$	пирохлор	261.902	0.047638	-5113179
$Tb_2O_3 \cdot 2ZrO_2$	флюорит	243.491	0.064295	-4462735
$Dy_2O_3 \cdot 2ZrO_2$	флюорит	243.098	0.053306	-2197936
$Ho_2O_3 \cdot 2ZrO_2$	флюорит	218.813	0.099037	-2139393
$Er_2O_3 \cdot 2ZrO_2$	флюорит	225.040	0.091458	-3597968
$Tm_2O_3 \cdot 2ZrO_2$	флюорит	203.351	0.104438	-3140025
LaNdZr ₂ O ₇	пирохлор	248.817	0.037619	-2708356
$LaSmZr_2O_7$	пирохлор	275.161	0.012485	-4799732
LaGdZr ₂ O ₇	пирохлор	263.073	0.023592	-4313576
LaDyZr ₂ O ₇	пирохлор	250.508	0.035837	-2899003

Низкотемпературные и высокотемпературные значения изобарной теплоемкости соединений Ln₂Zr₂O₇ впервые были измерены на одних и тех же образцах и хорошо совпали с литературными данными в тех случаях, когда таковые имелись. Например, измерение

низкотемпературной теплоемкости цирконата лантана (пирохлор) было выполнено для подтверждения качества синтеза и измерений теплоемкости в сравнении с имеющимися литературными данными, опубликованными исследователями из литературных данных (рис. 4) [16]. Видно, что оба набора данных удовлетворительно совпадают во всем температурном диапазоне.

Расчет термодинамических свойств цирконата самария был проведен с учетом магнитного превращения, описанного в работе [17].

Как показано в обзоре литературы, для некоторых пирохлоров $Ln_2Zr_2O_7$ изобарная теплоемкость была измерена ранее, но измерения теплоемкости цирконата празеодима, твердых растворов типа $Ln_2O_3 \cdot 2ZrO_2$ и La $LnZr_2O_7$ нами были выполнены впервые. Важно отметить, что в случае твердых растворов $Ln_2O_3 \cdot 2ZrO_2$ величины теплоемкости отличаются от оценки по правилу Неймана-Коппа (рис. 5), в то время как для твердых растворов La $LnZr_2O_7$ отмечается удовлетворительное совпадение.

Рис. 4. Теплоемкость цирконата лантана: 1-наши данные, 2- [16].

Рис. 5. Температурная зависимость теплоемкости Er₂O₃·2ZrO₂: 1 - адиабатическая калориметрия 6-340 К и ДСК 340-1400 К; 2 - оценка теплоемкости по правилу Неймана-Коппа.

Рис. 6. Сравнение данных по теплоемкости цирконата самария: 1 - флюорит, 2 - пирохлор.

Представлялось также интересным сравнить теплоемкости стабильного пирохлора и метастабильного флюорита, что показано на примере цирконата самария (рис. 6). Видно, что кривые для низкотемпературной теплоемкости очень близки и практически совпадают, в то

время как измерения высокотемпературной теплоемкости для флюоритов приводят к невоспроизводимому завышению результатов.

Рис. 7. Разность теплоемкостей (Sm₂Zr₂O₇-La₂Zr₂O₇). Пунктиром показан вклад аномалии Шоттки для SmPO₄ [18].

Полученные данные по изобарной теплоемкости цирконатов лантаноидов и твердых растворов позволили оценить общий вид аномалии Шоттки для $Sm_2Zr_2O_7$, $Dy_2O_3 \cdot 2ZrO_2$, $Ho_2O_3 \cdot 2ZrO_2$, $Er_2O_3 \cdot 2ZrO_2$ с помощью представления, предложенного Веструмом [19]. На рис. 7 показан вид аномалии Шоттки для $Sm_2Zr_2O_7$ в сравнении с фосфатом самария. Различный вид аномалии объясняется неизоструктурностью этих соединений. Видно, что изменение кристаллической решетки оказывает существенное влияние на расщепление электронных уровней. Сравнение с данными для ортофосфата самария [18] показывает, что наблюдается сдвиг максимума избыточной теплоемкости в область низких температур.

выводы

- 1. Показано, что при использовании метода обратного осаждения для синтеза кристаллических равновесных цирконатов лантаноидов со структурой пирохлора Ln₂Zr₂O₇ (La-Gd), твердых растворов со структурой флюорита состава Ln₂O₃·2ZrO₂ (Tb-Tm) и твердых растворов пирохлоров LaLnZr₂O₇ (Ln=Nd, Sm, Gd, Dy) образование флюоритной наноразмерной структуры происходит в интервале температур 920-1170 K, а образование пирохлоров выше 1270 K, при этом кристаллическая стабильная и равновесная форма с размером кристаллитов (>100 нм) возникает при 1670-1870 K.
- 2. Методами термического анализа и калориметрии показано, что синтезированные стабильные фазы не имеют полиморфных превращений в области 5-1700 К.
- Впервые определена температурная зависимость параметра кубической решетки твердого раствора Tm₂O₃·2ZrO₂ и рассчитан коэффициент термического линейного расширения (298-1173 K).
- Изобарная теплоемкость 14 соединений и твердых растворов измерена методами адиабатической калориметрии в интервале 5-340 К и дифференциальной сканирующей калориметрии в интервале 340-1400 К.
- Выполнено сглаживание значений экспериментальной теплоемкости и проведен расчет термодинамических функций: энтропию, приращение энтальпии и приведенную энергию Гиббса.
- 6. Термодинамические данные получены в широком температурном диапазоне (~5-1400 К) для соединений и твердых растворов оксидов лантаноидов и диоксида циркония, в том числе впервые для цирконата празеодима (10-1400 К), цирконата самария (5-60 К), цирконата гадолиния (340-1400 К), твердых растворов со структурой флюорита состава Ln₂O₃·2ZrO₂ (Tb-Tm) и твердых растворов пирохлоров LaLnZr₂O₇ (Ln=Nd, Sm, Gd, Dy).
- Показано, что в случае твердых растворов Ln₂O₃·2ZrO₂ правило Неймана-Коппа дает недостаточно точный результат, тогда как для твердых растворов пирохлоров LaLnZr₂O₇ его можно использовать.

Список цитируемой литературы

- 1. ICCD PDF Number 01-074-8764
- 2. ICCD PDF Number 01-078-7481
- 3. ICCD PDF Number 01-078-5956
- 4. ICCD PDF Number 01-075-8266
- 5. ICCD PDF Number 01-075-8268
- 6. ICCD PDF Number 01-075-8269
- 7. ICCD PDF Number 01-078-4087
- Zoz, E.I. The Structure and Properties of Lanthanide Zirconates and Hafnates / E.I. Zoz, E.N. Fomichev, A.A. Kalashnik, G.G. Eliseeva // Russian Journal of Inoganic Chemistry (translated from Zhurnal Neorganicheskoi Khimii). – 1982. – V. 27. – P. 54-56.
- 9. ICCD PDF Number 01-078-1293
- 10. ICCD PDF Number 01-078-1294
- 11. ICCD PDF Number 01-078-1299
- Portnoi, K.I. Synthesis and investigation of properties of complex oxides of rare earths and zirconium / K.I. Portnoi, N.I. Timofeeva, S.E. Salibekov, I.V. Romanovich // Inorganic Materials (translated from Neorganicheskie Materialy). – 1972. – V. 8. – P. 358-360.
- 13. ICCD PDF Number 01-078-4981
- 14. ICCD PDF Number 01-071-1023
- 15. ICCD PDF Number 01-077-0738
- 16. Boleh, M. The heat capacity and derived thermodynamic functions of La₂Zr₂O₇ and Ce₂Zr₂O₇ from 4 to 1000 K / M. Boleh, E.H.P. Cordfunke, A.C.G. Van Genderen, R.R. Van Der Laan, F.J.J.G. Janssen, J.C. Van Miltenburg. // J. Phys. Chem Solids. 1997. V. 58. № 3. P. 433-439.
- 17. Singh, S. Manifestation of geometric frustration on magnetic and thermodynamics properties of pyrochlores Sm₂X₂O₇ (X=Ti, Zr) / S. Singh, S. Saha, S.R. Dhar, R. Suryanarayanan, A.K. Sood, A. Revcolevschi // Phys.Rew. – 2008. – V. B 77.
- Gavrichev, K. S. Heat capacity and thermodynamic functions of SmPO₄ in the range 10-1600 K / K.S. Gavrichev, V.M. Gurevich, M.A. Ryumin, A.V. Tyurin, L.N. Komissarova // Geochemistry International. – 2015. – V. 53. – N. 7. – P. 607-616.
- Sommers, J.A. Thermodynamics of the lanthanide halides II. Heat capacities and Schottky anomalies of SmCl₃, EuCl₃, and GdCl₃ from 5 to 350 K / J.A. Sommers, E.F. Westrum // Journal of Chemical Thermodynamics. 1977. V. 9. P. 1-26.

Основное содержание диссертации изложено в работах

Гагарин, П.Г. Термодинамические свойства Dy₂O₃·2ZrO₂ и Ho₂O₃·2ZrO₂ в области 10–340
К / П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, Г.Е. Никифорова, К.С. Гавричев, А.В. Шляхтина
// Неорганические материалы. – 2017. – Т. 53. – № 1. – С. 64-70.

2. Гагарин, П.Г. Термодинамические свойства р-Sm₂Zr₂O₇ / П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, А.В. Хорошилов, Г.Е. Никифорова, К.С. Гавричев // Неорганические материалы. – 2017. – Т. 53. – № 6. – С. 632-638.

3. Гагарин, П.Г. Термодинамические свойства Er₂O₃·2ZrO₂ в области 6 – 1400 К / П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, А.В. Хорошилов, Г.Е. Никифорова, К.С. Гавричев // Неорганические материалы. – 2017. – Т. 53. – № 9. – С. 963-969.

4. Гагарин, П.Г. Синтез и свойства цирконатов лантанидов в структуре пирохлора / П.Г. Гагарин, А.В. Тюрин // Тезисы докладов V конференция молодых ученых по общей и неорганической химии ИОНХ РАН, Москва. – 2015. – С. 40.

5. **Gagarin P.G.** Synthesis and properties of lanthanide zirconate with pyrochlore structure / P.G. Gagarin, A.V. Shlyakhtina, A.V. Tyurin, V.N. Guskov // Abstracts of the XX international conference on chemical thermodynamics in Russia, Nizhny Novgorod. – 2015. – P. 106.

6. Гавричев, К.С. Термодинамические и структурные свойства цирконатов лантаноидов / К.С. Гавричев, В.Н. Гуськов, **П.Г. Гагарин**, А.В. Шляхтина // 10-й Всероссийский симпозиум с международным участием «Термодинамика и материаловедение», Санкт-Петербург. – 2015. – С. 210.

7. Гагарин, П.Г. Термодинамические свойства цирконата неодима Nd₂Zr₂O₇ / П.Г. Гагарин, А.В. Тюрин // VI Конференция молодых ученых по общей и неорганической химии ИОНХ РАН, Москва. – 2016. – С. 47-48.

8. **Gagarin, P.G.** Thermodynamic properties of zirconates lanthanides / P.G. Gagarin, A.V. Turin, V.N. Guskov, J.V. Dobrokhotova, K.S. Gavrichev // International conference on thermal analysis and calorimetry in Russia (RTAC-2016), St. Petersburg. – 2016. – P. 211-213.

9. Гагарин, П.Г. Термодинамические свойства Sm₂Zr₂O₇ / П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, К.С. Гавричев, А.В. Хорошилов // VII Конференция молодых ученых по общей и неорганической химии ИОНХ РАН, Москва. – 2017. – С. 45-46.

10. Гагарин, П.Г. Теплоемкость цирконата самария при 10-1400 К / П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, К.С. Гавричев, А.В. Хорошилов, Г.Е. Никифорова // Труды научного семинара памяти профессора И.Л. Ходаковского, сборник материалов, Дубна. – 2017. – С. 23-25.

11. **Gagarin, P.G.** High-temperature heat capacity of LaLnZr₂O₇ solid solutions / P.G. Gagarin, A.V. Khoroshilov, V.N. Guskov, K.S. Gavrichev // XXI International conference on chemical thermodynamics in Russia (RCCT-2017), Novosibirsk. -2017. - P. 129.

12. Gavrichev, K.S. Heat capacity and thermodynamic properties of zirconates of lanthanides / K.S. Gavrichev, **P.G. Gagarin**, V.N. Guskov // 4th Central and eastern Europe conference on thermal analysis and calorimetry (CEEC-TAC4) Moldova, Chisinau. – 2017. – P. 270.

13. Гагарин, П.Г. Термические и термодинамические свойства цирконатов лантаноидов со структурой пирохлор Ln₂Zr₂O₇ / П.Г. Гагарин, В.Н. Гуськов, А.В. Тюрин, К.С. Гавричев, Г.Е. Никифорова // VIII Конференция молодых ученых по общей и неорганической химии ИОНХ РАН, Москва. – 2018. – С. 30-31.

14. Гагарин, П.Г. Термодинамические свойства твердых растворов Ln₂O₃·2ZrO₂ (Ln=Tb...Tm) / П.Г. Гагарин, В.Н. Гуськов, А.В. Тюрин, К.С. Гавричев // Всероссийская конференция с международным участием «Химия твердого тела и функциональные материалы» и XII Всероссийского симпозиума с международным участием «Термодинамика и материаловедение», Санкт-Петербург. – 2018. – С. 189.

15. Хорошилов, А.В. Теплоемкость цирконатов и гафнатов лантаноидов при 340 – 1400 К / А.В. Хорошилов, **П.Г. Гагарин**, А.В. Гуськов, В.Н. Гуськов, К.С. Гавричев // VIII Международная научная конференция «Химическая термодинамика и кинетика», Тверь. – 2018. – С. 417-418.

16. Гагарин, П.Г. Термодинамические свойства пирохлоров Ln₂Zr₂O₇, твердых растворов Ln₂O₃·2ZrO₂ и LaLnZr₂O₇ / П.Г. Гагарин, А.В. Тюрин, В.Н. Гуськов, К.С. Гавричев, Д.Ю. Григораш // VIII Международная научная конференция «Химическая термодинамика и кинетика», Тверь. – 2018. – С. 96-97.

Благодарности

Автор выражает глубокую благодарность сотрудникам лаборатории термического анализа и калориметрии за постоянное внимание и помощь в работе научному руководителю д.х.н. В.Н. Гуськову, д.х.н. К.С. Гавричеву, к.х.н. А.В. Тюрину, к.х.н. М.А. Рюмину, к.х.н. А.В. Хорошилову, н.с. Г.Е. Никифоровой, к.х.н. А.Е. Баранчикову и д.х.н. А.В. Шляхтиной.