Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)

На правах рукописи

Daugheb

Голубев Алексей Валерьевич

Синтез пергалогенированных производных *клозо*-декаборатного аниона с сера- и азотсодержащими функциональными группами

1.4.1 – неорганическая химия

ДИССЕРТАЦИЯ на соискание ученой степени кандидата химических наук

Научные руководители: Жижин Константин Юрьевич, чл.-корр. РАН, д.х.н. Быков Александр Юрьевич, к.х.н.

Москва 2022

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР	. 10
1.1. Кластерные анионы бора	. 10
1.2. Производные кластерных анионов бора	. 10
1.2.1. Производные со связью B-S	. 11
1.2.2. Производные со связью B-N	. 15
1.2.3. Производные со связью В-О	. 20
1.3. Галогенированные кластерные анионы бора	. 24
1.3.1. Методы галогенирования	. 25
1.4. Пергалогенированные карбораны	. 27
1.4.1. Методы галогенирования	. 28
1.5. Пергалогенированные производные клозо-боратных анионов	. 31
1.6. Ионные жидкости	. 41
1.6.1. Основные свойства	. 41
1.6.2. Ионные жидкости на основе кластерных анионов бора	. 44
1.7 Заключение по литературному обзору	. 49
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	. 52
2.1. Реагенты, растворители, приборы	. 52
2.2. Синтез	. 54
2.2.1. Синтез исходных кластерных анионов бора	. 54
2.2.2. Синтез сульфониевых производных клозо-декаборатного аниона	. 55
2.2.3. Синтез аммониевых производных клозо-декаборатного аниона	. 64
2.2.4. Синтез хлорированных сульфониевых производных	. 68
2.2.5. Синтез хлорированных аммониевых производных	. 78
2.2.6. Синтез бромированных сульфониевых производных	. 85
2.2.7. Синтез бромированных аммониевых производных	. 94
2.2.8. Синтез исходных соединений для ионных жидкостей	. 97
2.2.9. Синтез ионных жидкостей на основе $[2-B_{10}H_9S(n-C_{18}H_{37})_2]^{-1}$. 99
2.2.10. Синтез ионных жидкостей на основе [2-B ₁₀ Cl ₉ S(<i>n</i> -C ₁₈ H ₃₇) ₂] ⁻	103

2.2.11. Синтез ионных жидкостей на основе [2-B ₁₀ Br ₉ S(<i>n</i> -C ₁₈ H ₃₇) ₂] ⁻ 10	07
ГЛАВА 3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ1	12
3.1. Галогенирование ди-S,S-замещенных производных	
клозо-декаборатного аниона1	12
3.2. Получение пергалогенированных	
сульфанил-клозо-декаборатных анионов12	27
3.3. Галогенирование три-N,N,N-замещенных производных	
клозо-декаборатного аниона1	33
Хлорирование три-N,N,N-замещенных производных	
клозо-декаборатного аниона 12	35
3.4. Исследование анионов $[2-B_{10}X_9S(C_{18}H_{37})_2]^-$ (X = H, Cl, Br) как	
потенциальных компонентов для ионных жидкостей14	48
ВЫВОДЫ1	55
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 1:	57
СПИСОК ЛИТЕРАТУРЫ1	58

введение

Актуальность работы. Слабокоординирующие анионы, например $[ClO_4]^{-}$, $[PF_6]^{-}$ или $[BF_4]^{-}$, играют важную роль в фундаментальной и прикладной науке [1,2]. Они могут быть использованы для улучшения каталитических свойств комплексов переходных металлов, повышать растворимость солей в слабо полярных растворителях или стабилизировать реакционноспособные катионы. Известно, что данные анионы не обладают высокой химической стабильностью и возможностью их дальнейшей модификации с целью придания специфических химических свойств. Таким образом, поиск новых слабо-координирующих анионов остается актуальной задачей. В настоящее время требования к слабо-координирующим анионам становятся все более строгими: во-первых, они должны обладать высокой термической и химической стабильностью, во-вторых, быть доступным для быть синтеза, в-третьих, однозарядными И в-четвертых, обладать реакционными центрами способными к модифицированию.

Основываясь перечисленных **WCA** на выше критериях для (слабокоординирующие анионы), одними из подходящих анионов являются кластерные анионы бора [3]. Они обладают более высокой термической и химической стабильностью. Кроме того, одним из способов модификации данных соединений является полная замена атомов водорода в полиэдре на галогены [4], что приводит к снижению количества "специфических" межмолекулярных взаимодействий в соединении, в частности водородных связей. Это приводит к существенному уменьшению координирующей способности данных соединений и они могут быть использованы для таких реакционоспособных катионов как Et_3Si^+ , Et_2Al^+ [5,6]. Однако, наличие лвойного отрицательного заряда не позволяют полностью раскрыть потенциал данных кластерных соединений как слабо координирующих анионов. Возможность введения экзо-полиэдрического заместителя путем электрофильно-индуцируемого нуклеофильного замещения позволяет не только снизить общий заряд системы, но и придать новые физические и

4

физико-химические свойства. В результате чего было получено большое число различных производных, в которых общий заряд системы был равен -1 [7-9]. Объединение этих методов модификаций кластерных анионов бора позволяет получить новый тип соединений, которые могут быть отнесены к классу слабо-координирующих анионов. Возможность модификации экзополиэдрического заместителя позволяет получать соединения с заданными свойствами, благодаря чему они могут найти свое применение В супрамолекулярной химии в качестве удобной платформы для введения клозо-боратных анионов в органические полимеры, или в качестве перспективных компонентов ионных жидкостей, исследование которых набирает все больше и больше популярности.

На данный момент в литературе описан ряд ионных жидкостей на основе клозо-декаборатного и клозо-додекаборатного анионах [10,11]. При этом наличие двойного отрицательного заряда препятствует их дальнейшему использованию, так как практически все полученные соединения обладают высокоми температурой плавления и вязкостью. Следующим рассмотренным объектом исследования использования кластерных анионов бора в качестве ионных жидкостей являлись алкокси-производные клозо-додекаборатного аниона [12], но было установлено, что увеличение длины алкильной цепи в анионной части приводит к росту температуры плавления данных соединений, что связано с большим числом взаимодействий анион-катион. Лучше всего в данной отрасли исследований, себя показали три-N,N,Nзамещенные аммониевые производные клозо-додекаборатного аниона $[1-B_{12}X_{11}NR_3]^{-1}$ [13,14]. Введение замещенного экзо-полиэдрического заместителя позволило решить проблему двойного отрицательного заряда, а увеличение длины алкильной цепи привело к существенному снижению температуры плавления данных соединений, по сравнению с незамещенными клозо-додекаборатными анионами. Несмотря на это, В литературе практически нет упоминания исследовании производных 0 КЛОЗО-

5

декаборатного аниона качестве ионных жидкостей. В хотя ИХ негалогенированные аналоги известны уже достаточно долго, а возможности получения производных на основе клозо-декаборатном анионе не уступают таковым для клозо-додекаборатного аниона. Таким образом, целью данной работы является разработка методов синтеза пергалогенированных производных клозо-декаборатного аниона с сера- и азотсодержащими функциональными группами, установление их физико-химических свойств и соединений исследование полученных В качестве перспективных компонентов ионных жидкостей.

Для достижения поставленной цели были поставлены следующие задачи:

- Разработка методик получения полностью галогенированных ди-S,S-замещенных сульфониевых $[2-B_{10}X_9SR_2]^-$ и три-N,N,N-замещенных аммониевых $[2-B_{10}X_9NR_3]^-$ (X = Cl, Br) производных на основе *клозо*-декаборатного аниона;

- Определение состава и строения полученных соединений методами ЯМР спектроскопии на ядрах ¹¹В, ¹Н и ¹³С, ИК-спектроскопией, элементным анализом и рентгеноструктурным анализом монокристалла;

- Разработка методик получения ионных жидкостей на основе производных *клозо*-декаборатного аниона с заместителями, содержащими длинноцепочечные алкильные фрагменты.

Научная новизна работы. Разработаны методы синтеза пергалогенированных диалкил- и диарилсульфониевых $[2-B_{10}X_9SR_2]^{-}$ (X = Cl, Br) и триалкиламмониевых $[1-B_{10}X_9NR_3]^{-1}$ и $[2-B_{10}X_9NR_3]^{-1}$ (X = Cl, Br) клозо-декаборатного аниона, заключающиеся производных BO взаимодействии исходных негалогенированных производных с такими галогенирующими сульфурилхлорид $(SO_2Cl_2),$ Nагентами как хлорсукцинимид (NCS), элементарный бром (Br₂). При этом разработанные методы синтеза позволяют получать соединения с высокими выходами. На основании полученных данных установлено, что процесс галогенирования не затрагивает экзо-полиэдрическую функциональную группу, что позволяет проводить данный процесс для большого числа соединений с различными заместителями, от простых алкильных до заместителей с карбоксильными или фталимидными группами.

Проведено исследование влияния галогенирующего агента на процесс хлорирования три-N,N,N-замещенных производных *клозо*-декаборатного аниона с алкильными заместителями, установившее, что использование SO_2Cl_2 приводит к перегруппировке борного остова с переносом замещенной позиции из экваториального положения в апикальное. Данного эффекта не наблюдается, если в качестве галогенирующего агента использовать NCS. Установлено, что стерическая затрудненность позиций борного остова у *ипсо*-атома в замещенных сульфониевых [2-B₁₀X₉SR₂]⁻ и аммониевых [1-B₁₀X₉NR₃]⁻, [2-B₁₀X₉NR₃]⁻ (X = Cl, Br) производных *клозо*-декаборатного аниона увеличивает время протекания процесса их галогенирования.

Показано, что увеличение длины алкильной цепи R при сульфониевой группе аниона $[2-B_{10}X_9SR_2]^-$ (X = H, Cl, Br) с одновременной полной заменой экзо-полиэдрических атомов водорода в борном остове на галогены приводит к понижению температуры плавления солей полученных анионов вплоть до комнатной.

Практическая значимость.

Разработаны методы исчерпывающего галогенирования для сульфониевых и аммониевых производных *клозо*-декаборатного аниона с помощью ряда галогенирующих агентов (сульфурилхлорид, N-хлорсукцинимид и элементарный бром). Данные методы не требуют специфического оборудования или высокой температуры для проведения реакций галогенирования и позволяют получать целевой продукт с высокими выходами (80-90%).

Получено 48 новых пергалогенированных замещенных сульфониевых $[2-B_{10}X_9SR_2]^{-}$ и аммониевых $[1(2)-B_{10}X_9NR_3]^{-}$ (X = Cl, Br) производных *клозо*-

декаборатного аниона. Строение 23 соединений было установлено с помощью рентгеноструктурного анализа монокристалла. Полученные соединения в дальнейшем могут быть использованы для получения новых типов неорганических и бионеорганических систем, например ионные жидкие кристаллы или ионные жидкости.

Разработаны методы синтеза новых перспективных ионных жидкостей основе ди-S,S-замещенных сульфониевых производных на КЛОЗОдекаборатного аниона с октадецилалкильными заместителями $[2-B_{10}X_9S(n-C_{18}H_{37})_2]^{-1}$ (X = H, Cl, Br) с такими органическими катионами, как: 1-этил-3-метилимидазолий, 1-бутил-3-метилимидазолий, 1-метил-3- $C_5H_5N(CH_2)_{15}CH_3$, $(C_{12}H_{25})_4N$, октилимидазолий, $(C_{12}H_{25})(CH_3)_3N$, $(C_6H_{13})_3(C_{14}H_{29})$ Р. Получено 21 соединение с температурой плавления ниже 100°C.

На защиту выносятся следующие положения:

- разработка методов исчерпывающего галогенирования ди-S,S-замещенных сульфониевых и три-N,N,N-замещенных аммониевых производных *клозо*декаборатного аниона;

- изучение влияния различных функциональных групп в замещенной позиции на время протекания процесса галогенирования;

- разработка методов получения ионных жидкостей на основе ди-S,Sзамещенных сульфониевых производных *клозо*-декаборатного аниона с октадецилалкильными заместителями и их пергалогенированных аналогов.

Личный вклад автора состоял в выполнении всего объема экспериментальной работы, а также участии в постановке основных задач исследования, анализе и интерпретации полученных данных.

Разработка общих стратегий к получению пергалогенированных производных *клозо*-декаборатного аниона с сера- и азотсодержащими функциональными группами выполнены совместно с д.х.н., чл-корр. РАН, Жижиным К.Ю. (ИОНХ РАН) и к.х.н. Быковым А.Ю. (ИОНХ РАН). Рентгеноструктурный анализ выполнен совместно с к.х.н. Кубасовым А.С.

(ИОНХ РАН). Эксперименты ЯМР выполнялись совместно с Селивановым Н.А. (ИОНХ РАН). Элементный анализ выполнен в НИЦ "Курчатовский институт" - ИРЕА.

Апробация работы и достоверность результатов проведенных исследований, обоснованность научных положений И выводов, сформулированных диссертации, обусловлена набором В широким экспериментальных данных, полученных путем применения комплекса физико-химических современных высокоточных методов анализа И взаимодополняющих полученные исследования, сведения. Результаты работы были представлены на российских и международных конференциях: IX конференция молодых ученых по общей и неорганической химии, Москва, 2019; XXI Mendeleev Congress on General and Applied Chemistry, Санкт-Петербург, 2019; Х конференция молодых ученых по общей и неорганической химии, Москва, 2020; XIX Всероссийская конференция молодых ученых "Актуальные проблемы неорганической химии: материалы для генерации, преобразования и хранения энергии", Москва, 2020; XI конференция молодых ученых по общей и неорганической химии, Москва, 2021; XXVIII Международная Чугаевская конференция по координационной химии, Туапсе, 2021.

Публикации. По материалам научно-квалификационной работы (диссертации) опубликовано 6 статей в рецензируемых зарубежных и российских научных журналах, рекомендованных ВАК, индексируемых в базах данных Scopus, Web of Science, ядро РИНЦ, а также 8 работ представлены в виде тезисов докладов на вышеуказанных научных конференциях.

Благодарности. Работа выполнена при поддержке гранта Министерства науки и высшего образования России № 075-15-2020-782.

9

Глава 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Кластерные анионы бора

Одними из представителей слабо координирующих анионов явлюятся кластерные анионы бора. К ним относится большое число различных полиэдрических соединений, начиная от простых двухзарядных анионов состава $[B_nH_n]^{2-}$, где n = 6-12, до их производных - карборанов $[HCB_{11}H_{11}]^{-}$, азоборанов [HNB₁₁H₁₁]⁻ и металлоборанов. По своему строению, данные соединения представляют собой закрытые правильные полиэдрические фигуры, имеющие в своей основе треугольные грани и вершины, количество которых равно числу атомов бора в соединении. Кроме того, из-за такого молекуле представлено 2 типа строения В связи: двухцентровая двухэлектронная ковалентная связь (центральный атом бора – экзополиэдрический атом водорода) и многоцентровая многоэлектронная делокализованная связь, которую можно назвать трехмерной ароматической связью (центральный атом бора – четыре или пять соседних атомов бора). Именно наличие последнего типа связи, ароматической, обуславливает и физико-химические свойства данных полиэдрических соединений бора, кинетическая, термическая и например: высокая электро-химическая стабильность борных остовов, большое число различных реакций экзополиэдрического расширения, которые не разрушают борный полиэдр и др.

1.2. Производные кластерных анионов бора

Одним из способов модификаций данных кластерных анионов бора, является введение экзо-полиэдрической функциональной группы. Химия бора насчитывает огромное количество различных производных кластерных анионов бора. На данный момент можно выделить 4 основных класса соединений данного типа в зависимости от гетероатома (S, N, O, C). Данные соединения по своим свойствам и стабильности достаточно сильно отличаются друг от друга.

1.2.1. Производные со связью В-S

Первым классом рассмотренных производных клозо-боратных анионов являются производные с серосодержащими функциональными группами. В литературе описано достаточно большое число различных соединений типа. Первыми производными данного типа являются данного тиопроизводные *клозо*-додекаборатного аниона $[B_{12}H_{11}SH]^{2-}$ и $[B_{12}H_{11}SCH_{3}]^{2-}$. Данные соединения были получены путем взаимодействия исходного соединения $(H_3O)[B_{12}H_{12}].5H_2O$ с гидросульфидом натрия ИЛИ диметилдисульфидом [4]. При этом в первом случае реакцию проводили при нагревании до 100°C в течение 4 часов. Тогда как взаимодействие с диметилдисульфидом можно провести при комнатной температуре за 25 часов. Однако, что в первом случае, что во втором, реакция не имеет выраженного региоселективного характера, и приводит к образованию смеси продуктов.

Дальнейшая работа в данной области заключалась в использовании тио-органических соединений для различных получения различных производных клозо-боратных анионов. Например, при взаимодействии клозододека- или клозо-декаборатных анионов с тиокарбонильными соединениями при наличии электрофильных идукторов, таких как серная кислота H₂SO₄ или трифторуксусная кислота CF₃COOH, наблюдается образование производных со связью B-S [15]. Тогда как взаимодействие карборанов с аналогичными тиосоединениями приводит к образованию смеси продуктов (Схема 1) [16]. Как было сказано ранее, одним из методов получения сульфониевых производных является взаимодействие клозо-боратных анионов с диметилдисульфидом. Развитие данного метода описано в работах [17–19].

11

Схема 1. Взаимодействие карборанов и тиосоединений [16]

Например, в работе Вригхта [20] сообщается, что при взаимодействии *клозо*додекаботраного аниона с диметилсульфоксидом при наличии уксусного ангидрида приводит к образованию тио-производного. При этом наблюдается понижение общего отрицательного заряда, что позволяет получить в конечном итоге нейтральное ди-S,S-замещенное производное $B_{12}H_{10}(S(CH_3)_2)_2$ с выходом 89%.

Особо можно отметить способ получения сульфониевых производных клозо-боратных анионов путем замены *азо*-группы в соединениях с диазофункциональной группой. Кроме того, так как сами исходные соединения клозо-декаборатного аниона имеют данную группу по апикальным вершинам борного остова, это позволяет получать тио-соединения состава [1-SB₁₀H₉]⁻ или [1,10-S₂B₁₀H₈]⁻ [21] (Рисунок 2). Еще одной особенностью данных соединений является возможность получать соединения с двумя различными функциональными группами (Рисунок 2) при определенных условиях [22].

Рисунок 1. Строение производных *клозо*-декаборатного аниона с двумя различными заместителями [22]

Другим методом получения производных с серосодержащими функциональными группами является их модификация. На данный момент наиболее удобным методом получения сульфанил-*клозо*-боратных анионов является щелочной гидролиз производных с тиокарбонильными соединениями [23]. В результате чего, появляется удобная основа для дальнейшей модификации данного типа *клозо*-боратных анионов (Схема 2).

Описанный Комура метод получения сульфонильных производных клозо-декаборатного аниона $[1-B_{10}H_9SH]^{2-}$ и $[2-B_{10}H_9SH]^{2-}$, основанный на получении производных тетраметилтиомочевины и тиодиметилформамида и их последующем щелочном гидролизе, дает невысокие выходы целевых продуктов – 7% и 22%, соответственно, по отношению к исходной соли $[B_{10}H_{10}]^{2-}$, замена щелочного гидролиза на восстановление гидразином позволяет существенно повысить выходы целевых продуктов [24].

Одним из способов модификации является проведение реакции алкилирования по атому серы, которая обладает сильными нуклеофильными свойствами.

Схема 2. Схема гидролиза тиопроизводных клозо-боратных анионов [23]

Использование 2 или более эквивалентов алкилирующего агента приводит к получение ди-S,S-замещенных производных *клозо*-боратных анионов. Тогда как, если вводимая функциональная группа обладает достаточно большим стерическим фактором, например изо-бромпропан, при соотношении 1 к 1 преимущественно образуется моно-замещенное сульфониевое производное. Стоит отметить работы [25,26] (Схема 3).

Схема 3. Схема алкилирования сульфонил-клозо-додекаборатного аниона

[25]

Другим способом получения моно-замещенных производных является снятие одной из цианоэтильных групп путем обработки данного ди-S,Sзамещенного производного щелочью при комнатной температуре. После чего полученное соединение может быть проалкилировано необходимым алкилгалогенидом и снята вторая циано-группа [27] (Схема 4).

Схема 4. Схема синтеза монозамещенных сульфониевых производных [27]

Данные соединения могут быть использованы для дальнейшего синтеза несимметричных диалкил-замещенных сульфониевых производных *клозо*боратных анионов.

1.2.2. Производные со связью В-N

Другим интересным типом производных *клозо*-боратных анионов являются производные со связью B-N.

Первыми соединениями данного типа являлись аммонио-клозо-дека $[B_{10}H_9NH_3]$ аммонио клозо-додекаборатные $[B_{12}H_{11}NH_3]^{-1}$ И анионы. получены Соединения были действием гидроксиламин-сульфоновой кислотой на *клозо*-боратные анионы в водном растворе при 0°C. Остановить процесс на первой стадии практически невозможно и сразу происходит замещение по 2 позиции [28]. В результате чего образуется смесь дизамещенных производных, орто и мета, которые в дальнейшем могут быть разделены дробной перекристаллизацией (Схема 5). Тогда как в результате [B12H12]²⁻ наблюдается аминирования клозо-додекаборатного аниона образование смеси изомеров с различными замещенными позициями, это

 $1,12-[B_{12}H_{10}(NH_3)_2],$ $1,7-[B_{12}H_{10}(NH_3)_2]$ $1,2-[B_{12}H_{10}(NH_3)_2],$ И которого образуется Структура меньше всего. второго изомера, a именно 1,7-[B₁₂H₁₀(NH₃)₂] была получена при перекристаллизации ИЗ смеси вода/спирт (Рисунок 2).

Схема 5. Схема синтеза аммонио-клозо-декаборатного аниона [28]

Рисунок 2. Строение *клозо*-додекаборатного аниона с двумя аммониевыми группами [28]

Это послужило развитию других методов получения аммониевых производных. Одним из которых является взаимодействие нитрилов с *клозо*боратными анионами в присутствии протонных кислот. В зависимости от выбранной кислоты можно получать производные с замещенной апикальной или экваториальной позициями (Схема 6). Например, использование п-толуолсульфоновой кислоты приводит к получению производных с

апикальным расположением заместителя, тогда как использование трифторуксусной кислоты приводит к получению замещению 2 атома бора в полиэдре [29] (Рисунок 3).

Схема 6. Схема синтеза нитрилиевых производных клозо-декаборатного

аниона [29]

Рисунок 3. Строение аниона $[2-B_{10}H_9NCCH_3]^-$ по данным РСА [29]

Последующий гидролиз данных соединений приводит к получению аммонио-производных *клозо*-боратных анионов. При этом в зависимости от метода, есть возможность как получения моноалкилзамещенного производного, так и снятия алкильной группы (Схема 7).

Схема 7. Схема гидролиза нитрилиевых производных [29]

Как и в случае сульфониевых производных, одним из методов дальнейшей модификации данных соединений являются процессы алкилирования аммониевой группы [30]. При этом сообщают, что в зависимости от типа основания, реакция может как не пойти, так и образовать смесь моно, ди, три замещенных производных *клозо*-боратных анионов. Лучшим вариантом для получения трех-замещенных аммониевых производных является использование гидроксида калия в качестве основания (Схема 8).

Схема 8. Влияние выбора основания на процессы алкилирования аммонио-*клозо*-боратных анионов [30]

Кроме того, из-за стерических факторов, присоединить больше двух алкильных заместителей, обладающих объемными функциональными

группами, такими как Bn, i-Pr, не представляется возможным. Этого также не удается достичь, если сначала к азоту присоединить 2 метильные или этильные группы, а после проводить алкилирование этих соединений объемными заместителями (Схема 9).

Схема 9. Влияние алкильной группы на возможности алкилирования [30]

Но проблему стерической затруднености можно обойти, если на первой стадии провести гидролиз полученного нитрилиевого производного с сохранением метильной группы, после чего проводить алкилирование с замещением двух оставшихся возможных положений (Схема 10).

 $R = C_2 H_5, C_{12} H_{25}$

Схема 10. Схема синтеза несимметричных замещенных аммониевых производных [30]

1.2.3. Производные со связью В-О

Следующим рассмотренным типом производных *клозо*-боратных анионов являются соединения с экзо-полиэдрической связью В-О. Введение такого заместителя может протекать как с помощью нуклеофильных, так и радикальных процессов [7,31,32]. Кроме того, выбирая тип реагента и контролируя условия проведения реакции можно получать соединения содержащих несколько экзо-полиэдрических групп[33,34].

Простейшим представителем данного типа соединений являются гидроксопроизводные *клозо*-боратных анионов (Рисунок 5). Например, получить моно-производное можно прямым гидроксилированием *клозо*додекаборатного аниона путем взаимодействия данного аниона с концентрированным раствором серной кислоты в воде [35].

Рисунок 4. Строение аниона $[B_{12}H_{11}OH]^{2-}$ по данным PCA [35]

Однако, производные *клозо*-декаборатного аниона получить таким способом не представляется возможным. Для этого были разработаны методики на основе щелочного гидролиза производных *клозо*-декаборатного аниона (Схема 11), содержащие карбоксилатные и карбоксониевые функциональные группы [36,37].

$B_{10}H_{10-n}(OCOR)_n^{2-} + n OH^- \longrightarrow B_{10}H_{10-n}(OH)_n^{2-} + n RCOO^-$

Схема 11. Схема гидролиза производных с карбоксилатными группами [36]

В результате простого кипячения *клозо*-додекаборатного аниона в растворе 30% перекиси водорода в течение почти 2 недель позволяет получить производное содержащее 12 гидроксильных групп состава [B12(OH)12]²⁻ [38] (Схема 12).

Схема 12. Схема синтеза додекагидрокси-клозо-додекаборатного аниона [38]

В данной работе сообщается, что контроль за протеканием процесса замещения в борном остове достаточно удобно наблюдать с помощью ¹¹В ЯМР спектрокопии. Сигнал в ЯМР спектре конечного продукта при -17.1 м.д. соответствует полностью замещенному продукту, который является синглетом как в спектре ¹¹В, так и на спектре с подавлением спин-спинового взаимодействия ¹¹В-¹Н. Кроме того, для подтверждения полноты протекания процесса можно наблюдать с помощью ИК спектроскопии, исчезновение характерной полосы при 2500 см-1, соответствующей валентным колебаниям В-Н.

Алкилирование и ацилирование данных соединений (Схема 13) привело к получению большого количества производных [39,40].

 $R = n-Et, i-Pr, -(CH_2)_{15}CH_3, -CH_2Ph, p-CH_2C_6H_4NO_2$

Схема 13. Алкилирование по гидрокси-группе *клозо*-додекаборатного аниона [40]

Данный подход может быть использован и для исследования процессов алкилирования (Схема 14) *клозо*-декаборатного аниона [36].

R = n-Et, n-Pr, n-Bu, $CH_2CH_2CH(CH_3)_2$

Схема 14. Методика алкилирования гидрокси-*клозо*-декаборатного аниона [36]

Кроме того, особый интерес для исследования данных процессов представляет додекагидрокси-*клозо*-додекаборатный анион. В ходе научной работы проведения исчерпывающего алкилирования данного аниона позволяет получать сложные соединения в виде дендримеров, которые в дальнейшем могут быть достаточно перспективными для БНЗТ [41,42].

Однако, данный способ плохо подходит для получения ди-S,Sзамещенных производных *клозо*-боратных анионов. В результате чего были разработаны методики получения монозамещенных оксониевого типа с практически количественными выходами [15,43] (Схема 15). Строение полученных производных *клозо*-декаборатного аниона можно продемонстрировать на диоксановом производном [2-B₁₀H₉-*cyclo*-O(CH₂CH₂)₂O] (Рисунок 5).

Рисунок 5. Строение аниона [2-В₁₀Н₉-*cyclo*-O(CH₂CH₂)₂O]⁻ по данным PCA [43]

Тем не менее, дальнейшие исследования полученных соединений показали, что они не обладают достаточно высокой стабильностью для получения *клозо*-боратных анионов с длинными алкильными заместителями. Оксониевые производные *клозо*-декаборатного аниона в присутствии нуклеофильных реагентов способны вступать с ними в реакцию с раскрытием экзо-полиэдрических циклических заместителей [8] (Схема 16).

Хоть это не представляет возможности использовать оксониевые производные для ионных жидкостей, зато позволяет получить соединения содержащие функциональные группы отделенные от полиэдрического остова инертным спейсером.

Схема 15. Схема получения монозамещенных оксониевых производных *клозо*-декаборатного аниона [43]

Схема 16. Примеры реакций раскрытия циклических заместителей [8]

1.3. Галогенированные кластерные анионы бора

способом модификации Другим является всех замена ЭКЗОполиэдрических атомов водорода в борном остове на атомы галогенов (фтор, Первыми полученными соединениями бром, йод). являлись хлор, пергалогенированные кластерные соединения бора $[B_{10}X_{10}]^{2-}$ и $[B_{12}X_{12}]^{2-}$ (X = F, Cl, Br, I) [4] (Рисунок 6). Было показано, что получение частично галогенированных соединений не представляется возможным, так как реакция идет неконтролируемо, что приводит к образованию смеси

продуктов с разной степенью замещения борного остова $[B_{10}H_{10-n}X_n]^{2-}$ и $[B_{12}H_{12-n}X_n]^{2-}$ (n=8-12, X = F, Cl, Br, I).

Рисунок 6. Строение аниона $[B_{12}Cl_{12}]^{2-}$ по данным РСА [4]

1.3.1. Методы галогенирования Фторирование

Разработка наиболее удобных методов фторирования потребовало приложение больших усилий. Первые исследования фторирования основывались на использовании фтористого водорода с получением $[B_{10}F_{10}]^{2}$ и $[B_{12}F_{12}]^{2}$ [44]. Однако, немного позднее было сообщено, что проведение реакции фторирования с помощью HF не дает 100% выход при обычных условиях. Реакцию можно провести до конца с использованием высокого давления и температуры [45].

Другим используемым методом для получения полностью фторированных кластерных соединений бора является использование элементарного фтора в качестве фторирующего агента в растворе фтористого водорода при более низких температурах, чем в более ранних исследованиях [46]. Однако, хоть данный метод и позволял получить полностью фторированные соединения, из-за побочных реакций в результате которых образовывались продукты разложения такие как [BF₄]⁻ и [B₂₄F₂₂]⁴⁻.

Использование в качестве растворителя ацетонитрила, позволило получать полностью фторированные соединения $[B_{10}F_{10}]^{2-}$ и $[B_{12}F_{12}]^{2-}$ в более мягких условиях с хорошими выходами и в больших количествах [47].

Хлорирование

Первыми методиками получения галогенированных кластерных анионов бора основывались на пропускании газообразного хлора через раствор необходимой соли. Реакция с газообразным хлором в водном растворе приводила к образованию смеси хлорированных продуктов, которые затем можно было добить до перхлорированных соединений, путем проведения реакции с элементарным хлором в автоклаве при высоком давлении и температуре [4]. Однако данный метод не являлся достаточно хорошим, поскольку требовал специфического оборудования и проведения дополнительных стадий синтеза.

Последующие исследования показали, что можно получить полностью хлорированные соединения благодаря проведению реакции в кипящем водном растворе [48].

Ha удобным данный момент методом получения полность перхлорированных соединений клозо-декаборатного клозо-И додекаборатного аниона является взаимодействие солей исходных бороводородов с сульфурилхлоридом в ацетонитриле при нагреве [49]. Этот метод позволяет избежать использования элементарного хлора, и не требует специфического оборудования.

Бромирование

В отличие от других методов галогенирования, реакция с элементарным бромом идет намного легче и не требует специфического

26

оборудования [4]. Было показано, что реакция идет намного быстрее и легче, и спустя уже несколько минут в реакционной смеси наблюдалось смесь продуктов состава $[B_{10}H_{3-1}Br_{7-9}]^{2-}$ и $[B_{12}H_{2-1}Br_{10-12}]^{2-}$. Тогда как если реакционную смесь оставить на более длительное время или использовать нагрев в течение 4 часов позволяет получить полностью бромированные производные $[B_{10}Br_{10}]^{2-}$ и $[B_{12}Br_{12}]^{2-}$.

1.4. Карбораны

Другим интересным объектом исследования процессов галогенирования кластерных анионов бора являются карбораны, а именно [HCB₁₁H₁₁]⁻. Подобно и *клозо*-декаборатному и *клозо*-додекаборатному анионам, полная замена атомов водорода в борном остове на галогены приводит к улучшению химической и электрохимической стабильности, что делает координирующие способности данного аниона значительно ниже.

Тем не менее, в отличие от других высших кластерных анионов бора, строение карборанов сильно отличается от других анионов, что приводит к тому, что верхний пятичленный пояс менее реакционоспособен, что делает процесс полного галогенирования более сложным (Рисунок 7). В работе [50] сообщается, что первым атомом в полиэдре замещается позиция B12, после чего идет постепенное галогенирование нижнего экваториального пояса В7-В11. Последними позициями в кластере, участвующими в процессе галогенирования, являются атомы бора В полиэдре от верхнего экваториального пояса В2-В6. Однако, благодаря данной особенности, был получен ряд частично галогенированных производных, в котором или только один атом водорода при нижнем апикальном атоме бора был заменен на галоген, или вместе с нижним пятичленным поясом. Они могут быть получены в виде чистых соединений при соблюдении четких условий реакции.

Рисунок 7. Иллюстрация различных позиций в симметрично замещенном карборане с общей формулой [RCB₁₁X₅Y₅Z]⁻[50]

1.4.1. Методы галогенирования Фторирование

Первые попытки фторирования карборанов были аналогичны методам фторирования клозо-декаборатного и клозо-додекаборатного анионов. Однако, из-за более высокой химической стабильности верхнего экваториального пояса, как было сказано ранее, первые работы по получению фторированных соединений карборанов с помощью безводного фтороводорода заканчивались смесью в реакционной смеси соотношением $[CB_{11}H_7F_5]^{-}$ (35%), $[CB_{11}H_6F_6]^{-}$ (59%) и $[CB_{11}H_5F_7]^{-}$ (6%), которую в дальнейшем приходилось разделять с помощью хроматографии [51,52].

Дальнейшее исследование методов исчерпывающего фторирования основывались на пропускании элементарного фтора через раствор фтороводорода при комнатной температуре (Схема 17). При этом удалось повысить выход конечного продукта до 74 процентов [53].

Схема 17. Схема синтеза фторированных карборанов [53]

Хлорирование

В отличие от фторирования, использование элементарного хлора не представляет такой трудности, как с элементарным фтором. Пропускание газообразного хлора через раствор исследуемой соли с последующим нагревом при высоком давлении в автоклаве позволяет получить пергалогенированные карбораны с высокими выходами [54].

Дальнейшее исследование методов исчерпывающего галогенирования с помощью сульфурилхлорида показал, что на процесс протекания сильно влияют условия проведения реакции, в частности скорость протекания процесса и степень замещения в конечном соединении (Схема 18). Использование сульфурилхлорида на воздухе при комнатной температуре приводит к смеси продуктов состава [HCB₁₁H_{11-x}Cl_x], где x = 4-10. Тогда как кипячение повышает степень замещения на галоген в соединении до x = 8-11. Однако, если проводить реакцию в инертной атмосфере и более длительное время, единственным продуктом реакции является полностью замещенное производное состава [HCB₁₁Cl₁₁]⁻[50].

Кроме того, другим способом получения перхлорированных карборанов является сплавление исходной соли с хлоридом пятивалетного олова SbCl₅. Тем не менее, данную реакцию и можно проводить на воздухе,

наличие слишком большого количества воды приводит к частичному гидролизу конечного соединения до [HCB₁₁Cl₁₀OH]⁻.

Схема 18. Влияние условий на процессы хлорирования карборана [54]

Бромирование и йодирование

Благодаря своим свойствам карбораны могут быть прогалогенированы большим числом способов [55]. Однако для получения полностью замещенных производных необходимо использование таких галогенирующих агентов как Br₂ или ICl в присутствии сильных кислот, при этом необходим высокий нагрев до 200°C в герметичной посуде (Схема 19).

Схема 19. Влияние условий на процессы галогенирования карборанов и его замещенных [55]

1.5. Пергалогенированные производные клозо-боратных анионов

На текущий момент основными исследуемыми объектами для процессов галогенирования производных *клозо*-боратных анионов являлись производные *клозо*-додекаборатного аниона.

Впервые синтез полностью галогенированного производного *клозо*декаборатного аниона был опубликован в 2003 в работе Штраусса [46]. Описанная методика позволила получить перфторированное производное состава $[B_{12}F_{11}NH_3]^{-}$, но из-за необходимости специфического оборудования и высокой опасности работы с HF и F₂ дальнейшие исследования насчитывают всего лишь пару работ. Можно отметить фторирование аммониевых производных *клозо*додекаборатного аниона с одной или двумя функциональными группами [56], строение которых представлено ниже (Рисунок 8).

Рисунок 8. Строение *клозо*-додекаборатного аниона с двумя функциональными группами и его перфторированные аналоги [56]

Последующие попытки синтеза полностью галогенированных анионов [B₁₂Cl₁₁NH₃]⁻ и [B₁₂Br₁₁NH₃]⁻ не были успешными. Все методики известные до этого приводили к образованию смеси продуктов в реакционной смеси с различной степенью замещения [B₁₂X_{11-n}H_nNH₃]⁻, пока группа ученых под руководством Дженне не разработала метод основанный на использовании SbCl₅ [57] (Схема 20). А также другим исследуемым объектом являлись гидрокси-производные клозо-додекаборатного аниона (Схема 21). Предложенным галогенирующим агентом был элементарный хлор. Однако, использование хлора, который также является очень опасным химическим веществом, с которым трудно обращаться и который недоступен для академического использования в некоторых странах, послужило дальнейшим разработкам новых методов получения пергалогенированных производных клозо-боратных анионов.

Схема 20. Схема процесса хлорирования с помощью SbCl₅ [57]

Схема 21. Схема хлорирования с помощью Cl₂ [57]

Практически идеальной заменой хлора является сульфурилхлорид, который может быть использован в качестве хлорирующего агента (Схема 22). При этом, в данной работе сообщается и о способах дальнейшей модификации полученных соединений [13] (Схема 23). Строение полученных продуктов было подтвержено данными рентгеноструктурного анализа (Рисунок 9).

Схема 22. Схема хлорирования производных клозо-додекаборатного аниона

Схема 23. Схема модификации перхлорированных гидроксо-производных *клозо*-додекаборатного аниона [13]

Рисунок 9. Строение анионов $[B_{12}Cl_{11}NH_3]^-$ и $[B_{12}Cl_{11}OH]^{2-}$ [13]

Дальнейшее изучение данного метода для ускорения проведения реакции и увеличение выхода конечного продукта описано в работе [58]. Использование ультрафиолетового облучения в качестве инициатора радикальной реакции не показало хороших результатов. Другим предложенным способом полного замещения являлось проведение реакции в герметичной посуде при высокой температуре. В результате чего, термическая обработка при 120°C в течение 12 часов с помощью SO₂Cl₂ позволило получить полностью перхлорированное производное (Схема 24).

Исследование реакций алкилирования (Схема 25) показало, что получить трех-замещенное аммониевое производное перхлорированного *клозо*-додекаборатного аниона не представляется возможным в случае использования более длинных алкильных групп, чем метильная. Тогда как если на первой стадии получить три-N,N,N-аммониевое производное *клозо*додекаборатного аниона, последующее галогенирование не позволяет провести реакцию до полного завершения (Схема 26). Однако появляется возможность ступенчатого галогенирования борного остова. Строение полученных продуктов также было подтверждено данными РСА (Рисунок 10).

Схема 24. Влияние условий на процесс хлорирования аммонио-*клозо*додекаборатного аниона [58]

Схема 25. Схема алкилирования перхлорированных незамещенных аммониевых производных *клозо*-додекаборатного аниона [58]

Схема 26. Схема хлорирования три-N,N,N-замещенных аммониевых производных *клозо*-додекаборатного аниона [58]

Рисунок 10. Строение анионов [B₁₂Cl₁₁NMe₃]⁻ и [B₁₂Cl₆H₅N(*n*-Pr)₃]⁻ по данным PCA [58]

Единственным объектом исследования реакций галогенирования для *клозо*-декаборатного аниона являлись его аммониевые производные [59]. При

этом сообщаяется, что использование сульфурилхлорида приводит к деструкции борного остова, а полностью галогенированные соединения могут быть получены с помощью элементарных галогенов (Схема 27).

Схема 27. Схема галогенирования аммонио-клозо-декаборатного аниона [59]

Как и в случае аммониевых производных *клозо*-додекаборатного аниона изучение реакций алкилирования (Схема 28) полученных соединений показало, что использование алкилирующих агентов с объемными заместителями не позволяет получить трех-замещенные продукты [60].

Среди всего разнообразия исследованных пергалогенированных производных клозо-боратных анионов особо можно отметить разработку модификации аммониевой методики группы галогенированных y производных клозо-декаборатного аниона 2,3-эпоксипропаном (Схема 29), которого легко реагирует с различными нуклеофилами продукт С образованием ранее недоступных соединений борных полиэдров с органическими молекулами [61]. Строение некоторых полученных соединений было подтвержено РСА (Рисунок 11).

38

Схема 29. Схема использования пергалогенированных аммониевых производных *клозо*-декаборатного аниона [61]

Рисунок 11. Строение аниона [2-В₁₀І₉NH₂CH₂CH(OH)CH₂N(*n*-Bu)]⁻ по данным РСА [61]

небольшой Подведя итог, можно ясно сказать, что методов модификации кластерных анионов бора в литературе описано огромное количество. Введение полиэдрического заместителя позволяет не только снизить общий заряд системы, но и придать новые физические и физикохимические свойства. Полное замещение атомов водорода в полиэдре на галогены приводит к снижению межмолекулярных взаимодействий, что приводит к уменьшению координирующей способности данных соединений. А как было сказано ранее, кластерные анионы бора являются одним из представителей класса слабокоординирующих анионов. Все эти методы позволяют существенно изменить свойства конечных соединений в отличие от исходных клозо-боратных анионов. В результате чего они находят все новые и новые возможности применения, например в качестве ионных жидких кристаллов или как перспективные компоненты для ионных жидкостей.

1.6. Ионные жидкости

Ионные жидкости – это соединения, которые по своему составу состоят из катионов и анионов и обладают температурой плавления ниже 100°С. Они представляют собой интересный класс соединений, которые обладают рядом общих свойств, таких как низкое давление паров, невоспламеняемость, высокая термическая и химическая стабильность, и рядом свойств, которые могут быть изменены за счет изменения ионного состава (температура плавления, растворимость, гидрофобность, кислотность, вязкость и плотность).

Первое упоминание о таких соединениях наблюдается в работе Р. Walden в 1914 году [62]. В работе представлено получение нитрата этиламмония, температура плавления которого составляла -12°С. Следующая работа получению ПО изучению И ионных жидкостей на основе диалкилимидазолевых хлоралюминатов датируется 1982 годом J.S. Wilkes. Хотя данные вещества и обладали низкой температурой плавления (ниже -60 °C), однако были нестабильны на воздухе и в присутствии воды происходил гидролиз по аниону [63]. Данное открытие подстегнуло ученых к разработке новых ионных жидкостей, которые обладали бы стабильными как катионами, так и анионами. В 1990-х годах в работах J.S. Wilkes и М.J. Zaworotko были жидкости синтезированы ионные на основе имидазолиевых ИЛИ пиридиниевых катионов с ацетатными или тетрафторборатными анионами.

1.6.1. Основные свойства

Как уже было сказано ранее, уникальные свойства ионных жидкостей определяются их ионным составом. В качестве катиона для ионной жидкости ассиметричный положительно используется катион с заряженным гетероатомом, такими как азот, сера, фосфор, и обладающей боковой неполярной углеродной цепью [64]. Тогда как в качестве аниона могут выступать различные ионы, такие как галогены, тетрафторборат, гексафторфосфат, дицианамид и др. На рисунке ниже (Рисунок 12)

представлены наиболее распространенные катионы и анионы для ионных жидкостей.

Основным отличием между обычной солью и ионной жидкостью является ассиметричность молекулы последней, пространственная ионов и распределение электростатического заряда подвижность на относительно большой группе атомов. Структура обычных солей, таких как NaCl, собой представляет упорядоченное расположение ионов В пространства собой определенных точках _ что представляет кристаллическую решетку соединения. Вещества с ионной решеткой обладают рядом свойств: твердость, прочность, тугоплавкость, что объясняется наличием связей между ионами в кристалле, которые являются очень прочными и устойчивыми. Тогда как при увеличении размера распределения молекулы И ассиметричности заряда ослабевает И кулоновское взаимодействие между ионами, что приводит к слабой координации между ионами, что обуславливает низкую температуру плавления ионных жидкостей.

Ионные жидкости обладают некоторыми уникальными физикохимическими свойствами, которые определяются многими факторами. Например, длина алкильной цепи в катионе влияет на вязкость. Она увеличивается с увеличением числа CH₂-групп в цепи, что связано с ростом вандерваальсовых взаимодействий между ними [65,66]. Плотность ионных жидкостей может варьироваться в диапозоне 1.1-1.5 г/см³ и зависит от строения катиона и аниона, с увеличением длины алкильной цепи плотность понижается [67]. Они обладают очень низким давлением насыщенных паров, что делает их нелетучими соединениями. Однако, для большинства ионных жидкостей невозможно экспериментально определить летучесть, так как данные соединения начинают разлагаться при более низкой температуре. Катионы:

1,2,3-триалкилимидазолий Алкилпиридиний Диалкилпирролидиний Диалкилпиперидиний

Тетраалкилфосфоний Триалкилсульфоний Тетраалкиламмоний З-алкилоксазолий

Заместители:

CH₃ (*метил*), C₂H₅ (*этил*), n-C₃H₇ (*пропил*), n-C₄H₉ (*бутил*), n-C₆H₁₃ (*гексил*), n-C₈H₁₇ (*октил*), n-C₁₀H₂₁ (*децил*), CH₂(OH)C₂H₄ (*гидроксипропил*), CH₃OCH₂ (MeOMe), CH₃OCH₂ (MeOEt)

Анионы:

Рисунок 12. Примеры катионов и анионов применяемых для получения ионных жидкостей

Тем не менее, в литературе упоминается о возможности перегонять ионные жидкости при температуре 200-300 °С при очень низком давлении, но процесс протекает очень медленно [68].

Отдельно можно отметить свойства гидрофобности и гидрофильности для данного типа веществ. Она зависит от природы катиона и аниона, и боковой алкильной насколько большой является длина цепи [69]. Растворимость смешиваемость ионных жидкостей И также сильно Большинство отличается. смешивается органическими ИХ не С растворителями, такими как гексан или эфир, однако могут смешиваться с различными полярными растворителями, такими как спирты, дихлорметан и тетрагидрофуран [70,71]. Благодаря таким большим различиям по несмешиваемости как с водой, так и с некоторыми органическими растворителями, ионные жидкости могут применяться для создания двухфазных систем, которые могут находить применение во многих областях.

Таким образом, ионные жидкости обладают уникальным набором физико-химических свойств, которые позволяют применять их во многих фундаментальных и прикладных исследованиях, а также в промышленности. Ионные жидкости могут находить применение в микроволновом органическом синтезе [72], катализе и биокатализе [73,74], электрохимии [75,76], могут быть использованы в различных процессах экстракции и выделения [77,78]. В качестве подвижной или неподвижной фазы в жидкостной и газовой хроматографии, электрохроматографии [79].

Таким образом, ионные жидкости представляют собой интересный и полезный класс соединений. Из-за большого диапозона возможных свойств, который может быть задан с помощью изменения катион/анионного состава, они могут находить огромное число применений. На текущий момент, остается поиск перспективных компонентов для ионных жидкостей, которые удовлятворяли бы современным требованиям (высокая химическая и термическая стабильность, низкая координирующая способность, большой размер иона и высокое распределение общего заряда в системе) остается важной и перспективной задачей для данной области науки.

1.6.2. Ионные жидкости на основе кластерных анионов бора

Как было сказано ранее, одним из основных требований, как к катиону, так и аниону, для использования в качестве компонентов ионных жидкостей является низкая координирующая способность частицы. Одним из представителей слабокоординирующих анионов являются кластерные анионы бора. Данные соединения подходят по достаточно большому числу параметров: достаточно большой размер частицы с высоким распределением общего заряда по всей системе, высокая химическая и термическая стабильность, низкая координирующая способность. Все это делает их перспективными компонентами для получения новых ионных жидкостей на их основе.

Первыми соединениями на основе кластерных анионов бора, которые могут быть отнесены к классу ионные жидкости, являются соли на основе додекакарборанового аниона $[closo-CB_{11}H_{12}]^-$ с имидазолевыми катионами [80]. Сообщаяется, что удалось получить соли с температурой плавления ниже 45°C (Рисунок 13).

Рисунок 13. Примеры ионных жидкостей на основе алкилированных карборанов [80]

Следующими объектами исследований являлись частичногалогенированные карбораны [80]. На основании сравнения этих соединений с исходными, было установлено, что замена нижнего пояса на хлор достаточно серьезно понижает общую температуру плавления конечных соединений, при этом возрастала плотность этих веществ (Таблица 1).

В качестве замены имидазолевых катионов в работе [81] было предложено использовать 1-пентилпиридиниевый катион. В результате была получена соль с температурой плавления 19°С. В работе Larsen [82] сообщается, что соли на основе раскрытых кластерных карборанах [nido-

 $C_2B_9H_{12}$]⁻ (Рисунок 14) обладают более низкой температурой плавления, чем соли с [*closo*-CB₁₁H₁₂]⁻.

	соединение	Температура плавления, °С	Плотность, г/см ³
1	$(EMIM)[CB_{11}H_{12}]$	122	1.067
2	$(EMIM)[CB_{11}H_6Cl_6]$	114	1.431
3	$(EMIM)[CB_{11}H_6Br_6]$	139	2.151
4	$(EMIM)[1-CH_3-CB_{11}H_{11}]$	59	1.036
5	$(EMIM)[1-C_2H_5-CB_{11}H_{11}]$	64	1.050
6	$(EMIM)[1-C_3H_7-CB_{11}H_{11}]$	45	
7	$(EMIM)[1-C_4H_9-CB_{11}H_{11}]$	49	
8	$(OMIM)[CB_{11}H_{12}]$	70	
9	$(OMIM)[CB_{11}H_6Cl_6]$	67	1.341
10	$(EDMIM)[CB_{11}H_{12}]$	156	1.072
11	$(EDMIM)[CB_{11}H_6Cl_6]$	137	1.439
12	(BDMIM)[CB ₁₁ H ₁₂]	129	
13	(BDMIM)[CB ₁₁ H ₆ Cl ₆]	101	1.367

Таблица 1. Данные температуры плавления и плотность для ионных жидкостей на основе карборанов [82]

Другими объектами исследования в качестве компонентов ионных жидкостей, являлись *клозо*-декаборатный и *клозо*-додекаборатный анионы [11]. Основными методами получения данных соединений являлись реакции ионного обмена (Схема 30) проводимые в водных растворах между хлоридами или бромидами органических катионов и солями *клозо*-боратных анионов с щелочными металлами. В результате чего было получено большое число различных соединений, но только несколько из них представляли интерес в качестве ионных жидкостей из-за высокой температуры плавления.

Схема 30. Схема получения ионных жидкостей на снове клозо-декаборатного

и клозо-додекаборатного анионов [11]

Рисунок 14. Структура раскрытого карборана [nido-C₂B₉H₁₂] [82]

Их перхлорированные аналоги оказались более перспективными в данном направлении развития этой области науки. Хотя данные соединения и оказались менее высокоплавкими, это все равно оказалось достаточно далеко от желаемого. Основной проблемой этого являлось наличие двойного отрицательного заряда.

Эту проблему можно решить, если в качестве анионного компонента ионных жидкостей использовать производные кластерных анионов бора с экзо-полиэдрическими группами. Одним из первых анионов, которые использовались для этого, являлись трех-замещенные аммониевые производные *клозо*-додекаборатного аниона [30]. Исследование данных соединений показало, что увеличение длины алкильной цепи как в катионе так и в анионе способствует понижению температуры плавления конечных соединений (Таблица 2) Как можно увидеть, увеличение объемности аниона за счет длины алкильного радикала в заместителе и конечно понижение общего заряда, сильно помогло понизить конечную температуру плавления данных ионных жидкостей. При этом эти соединения обладают достаточно высокой термической стабильностью, выше 200°С.

$[B_{12}H_{11}NR_3]^{-1}$	Температура плавления, °С			
R =	N(Me) ₄	N(Bu) ₄	N-гексил- пиридиний	BMIM
Н	>250	188-190		
CH ₃			128-129	
C ₂ H ₅	314 (разложение)	194	130-132	128-130
C_3H_7	256-258	172-174	126-128	143-145
C_4H_9	222-225	175-176	40-50	115-116
<i>i</i> -C ₅ H ₁₁		112-114	<25	87-90
C ₆ H ₁₃	183-186	75-78	47-50	95-97
$C_{12}H_{25}$	60	40-45	<25	25
C ₃ H ₆ CH=CH ₂		50-60		

Таблица 2. Таблица зависимости температуры плавления от катиона и алкильного заместителя [30]

В своей работе Карстен Дженн и Кристфер Кирш исследовали алкокси-производные *клозо*-додекаборатного аниона в качестве ионных жидкостей [12]. Ими были установлены ряд интересных фактов. Температура плавления для соли $(C_8MIM)_2[B_{12}Cl_{11}O-C_3H_7]$ составляло 94-98°C, что существенно ниже чем для производных с заместителями $-C_8H_{17}$ и $-C_{12}H_{25}$. Тогда как для пербромированного производного $(C_8MIM)_2[B_{12}Br_{11}O-C_3H_7]$ температура плавления была существенно выше, чем для остальных пербромированных производных ($-C_8H_{17}$ и $-C_{12}H_{25}$). (Таблица 3).

Это объясняется образованием специфических слабых взаимодействий между алкильным заместителем и атомами галогенов в борном остове. Строение некоторых полученных анионов представлено на рисунке ниже (Рисунок 15).

анион	Температура плавления, °С	
$[B_{12}Cl_{11}O-C_{3}H_{7}]^{2}$	94-98	
$[B_{12}Cl_{11}O-C_8H_{17}]^{2}$	138-143	
$[B_{12}Cl_{11}O-C_{12}H_{25}]^{2}$	136-142	
$[B_{12}Br_{11}O-C_3H_7]^{2-}$	158-160	
$[B_{12}Br_{11}O-C_8H_{17}]^{2-}$	120-124	
$[B_{12}Br_{11}O-C_{12}H_{25}]^{2-}$	128-134	

Таблица 3. Температура плавления солей с катионом $(C_8 MIM)^+$ [12]

Рисунок 15. Строение перхлорированных алкилированных гидрокси-производных *клозо*-додекаборатного аниона [12]

1.7 Заключение по литературному обзору

На текущий момент известно достаточно много слабокоординирующих анионов, например $[ClO_4]^{-}$, $[PF_6]^{-}$ или $[BF_4]^{-}$. Однако, известно, что данные анионы не обладают высокой химической стабильностью и кроме того, их состав и строение не позволяет осуществить дальнейшую модификацию с целью придания необходимых химико-физических свойств. Как было сказано ранее, в настоящее время для слабокоординирующих анионов выдвигаются достаточно строгие требования: во-первых, они должны обладать высокой термической и химической стабильностью, во-вторых, быть доступным для синтеза, в-третьих, быть однозарядными и в-четвертых, обладать реакционными центрами способными к модифицированию. Одними из представителей данного класса соединений являются кластерные анионы бора и представленный литературный обзор указывает на это.

себе Во-первых, сами по кластерные анионы бора из-за полиэдрического строения борного каркаса обладают высокой термической и химической стабильность. Во-вторых, методы синтеза кластерных анионов бора известно уже достаточно долгое время. Современные методы синтеза позволяют получать соединения с высокими выходами целевого продукта. Втретьих, известно большое число различных способов модификации кластерных анионов бора, а именно: введение экзо-полиэдрического заместителя, что позволяет не только снизить общий заряд системы, но и придать новые физико-химические свойства; полная замена атомов водорода борном остове галогены приводит В на К уменьшению числа межмолекулярных взаимодействий, что снижает координирующую способоность этих соединений. Таким образом, кластерные анионы бора явлюятся представителями слабокоординирующих анионов и на данный момент исследуются как перспективные компоненты для создания новых типов неорганических и бионеорганических систем или ионных жидкостей.

В литературе упоминается об исследовании алкокси- [B₁₂X₁₁OR]⁻ и $[B_{12}X_{11}NR_3]^{-1}$ тризамещенных аммониевых производных КЛОЗОдодекаборатного аниона. Однако, алкокси производные не позволяют нам рассматривать их в качестве настоящих ионных жидкостей из-за наличия двойного отрицательного заряда, тогда как для тризамещенных аммониевых методов исчерпывающего производных проведение галогенирования достаточно трудоемки из-за высокого стерического фактора у замещенной позиции, но, все равно, конечные соединения показывают очень высокую

перспективность в качестве компонентов ионных жидкостей. Но остается не совсем понятно, почему внимание исследователей было обращено только на производные *клозо*-додекаборатного аниона, хотя методы синтеза и дальнейших модификаций для аниона $[B_{10}H_{10}]^{2-}$ не уступают таковым для аниона $[B_{12}H_{12}]^{2-}$.

В нашей работе мы постарались расширить область исследований пергалогенированных кластерных соединений бора, путем исследования пергалогенированных производных клозо-декаборатного аниона с сера и азотсодержащими функциональными группами, которые ранее не были изучены. Разработать методы их исчерпывающего галогенирования и показать их возможность использования в качестве перспективных компонентов ионных жидкостей.

Глава 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Реагенты, растворители, приборы.

Элементный анализ. Содержание углерода, водорода, азота и серы в соединениях определяли на элементом CHNS-анализаторе Eurovector "EuroEA 3000".

ИК спектры соединений записывали на ИК Фурье – спектрофотометре Инфралюм ФТ-08 (НПФ ФП "Люмекс") в области 4000-400 см⁻¹ с разрешением 1 см⁻¹. Образцы готовили в виде суспензии исследуемого вещества в тетрахлорметане CCl₄ или спресованных таблеток из KBr.

ЯМР ¹**H**, ¹¹**B**, ¹³**C спектры** растворов исследуемых веществ в CD₃CN, (CD₃)₂CO, (CD₃)₂SO, DMF-d7 записывали на импульсном фурьеспектрометре Bruker MSL-300 (ФРГ) на частотах 300.3, 96.32 и 75.49 МГц соответственно, с внутренней стабилизацией по дейтерию. В качестве внешних стандартов использовали тетраметилсилан и эфират трехфтористого бора.

Рентгеноструктурный анализ. Набор дифракционных отражений для кристаллов 23, 25, 26, 31-34, 37, 38, 40, 45, 50-54, 56, 57, 59, 60, 64, 65, 67 В Центре коллективного пользования ИОНХ PAH получен на автоматическом дифрактометре Bruker APEX2 CCD (λ MoK α , графитовый монохроматор, ω - ϕ -сканирование) или Bruker D8 Venture. Структуры расшифрованы прямым методом с последующим расчетом разностных синтезов Фурье. Все неводородные атомы уточнены в анизотропном приближении. Все атомы водорода уточнены по модели наездника с параметрами U_{изо} = 1.2 U_{экв} (U_{изо}) соответствующего тепловыми неводородного атома.

При сборе и обработке массива отражений использовались программы APEX2, SAINT [83] и SADABS [84]. Все структуры были расшифрованы и уточнены с помощью программ SHELXTL [85] и OLEX2 [86].

52

Основные кристаллографические данные, параметры эксперимента и характеристики уточнения структуры приведены в Приложение 1.

Методики выращивания монокристаллов. Кристаллы соединений 25, 26, 31-34, 37, 38, 68 пригодных для рентгеноструктурного анализа были получены паровой диффузией паров диэтилового эфира Et₂O в насыщенный раствор продукта в ацетонитриле CH₃CN при +4°C. Кристаллы соединений 23, 50-54, 56, 57, 59, 60, 64, 65 пригодных для рентгеноструктурного анализа были получены медленным упариванием насыщенного раствора продукта в диметилсулфоксиде DMSO при +25°C. Кристаллы соединений 40 и 45 пригодных для рентгеноструктурного анализа в виде солей с катионом (Ag(PPh₃)₄)⁺ были получены путем смешивания эквимолярных количеств соединений 40 и 45 с $(Ag(PPh_3)_4)NO_3$ в смеси дихлорметан/ацетонитрил в соотношении 1/1. После чего раствор оставляли медленно упариваться при +4°С. Кристаллы соединения 67 пригодных для рентгеноструктурного анализа в виде соли с катионом (Ag(PPh₃)₂Br)⁺ были получены путем смешивания эквимолярного количества соединения 67 с (Ag(PPh₃)₄)NO₃ в смеси дихлорметан/ацетонитрил в соотношении 1/1. После чего раствор оставляли медленно упариваться при +4°С.

Обработку ультразвуком проводили на ультразвуковой ванне Stegler 3DT с мощностью 40kHz. В качестве рабочей жидкости использовалась дистиллированная вода.

Глубокий вакуум создавали с помощью 2-х ступенчатого маслянороторного вакуумного насоса Value VE-225 с остаточным давлением 2 Па снабженного ледяной ловушкой погруженной в сосуд дьюара с жидким азотом.

Обработка ультрафиолетом реакционных растворов проводилась с помощью УФ лампы с длиной волны 365 нм мощностью 40W в круглодонных колбах из кварцевого стекла.

Температура плавления была измерена с помощью REACH Devices RD-MP в диапозоне температур 25-250°C с шагом нагрева 1.5, 3, 6 и 12°C/минуту.

Флэш-хроматография. Тонкослойная хроматография была проведена на предварительно покрытых пластинах DC-Fertigfolien ALUGRAM Xtra SIL G/UV₂₅₄ и результаты визуализировали с использовалием УФ-излучения.

Соединения растворяли в минимальном количестве дихлорметана и загружали на хроматографическую колонку, заполненную силикагелем 60 (размер пор 0,032-0,063 mm). После чего последовательно элюировали дихлорметаном, петролейным эфиром и ацетонитрилом. Фракцию ацетонитрила собирали и упаривали на роторном испарителе.

Реактивы. Сульфурилхлорид SO₂Cl₂ (97%), N-хлорсукцинимид (98%) и элементарный бром Br₂ (99.5%) были коммерчески доступны (Sigma-Aldrich). Ацетонитрил кипятили с гидридом кальция в течение нескольких часов, а затем перегоняли. Прочие растворители и реагенты марки XЧ и ОСЧ использовали без дополнительной очистки.

2.2. Синтез

2.2.1. Синтез исходных кластерных анионов бора

Декаборан-14. Исходный толуольный 20%-раствор декаборана-14 упаривали, а продукт сублимировали в вакууме ($T_{cv\delta} = 80^{\circ}$ C, p = 1,3 Па).

Декагидро-*клозо*-декаборат триэтиламмония (Et₃NH)₂[B₁₀H₁₀] получали по методике [4] из декаборана-14 по схеме:

$$B_{10}H_{14} + 2Et_3N \xrightarrow{\text{толуол}} (Et_3NH)_2[B_{10}H_{10}] + 2H_2$$

К раствору, содержащему 60 г (0.49 моль) декаборана-14 в толуоле при постоянном перемешивании прибавляли 140 мл (102 г, 1.00 моль) триэтиламина. Температуру раствора повышали до 100 С и реакционную смесь при постоянном перемешивании выдерживали в течение трех часов, а

затем кипятили еще несколько часов до образования осадка. Полученный осадок отфильтровывали, промывали диэтиловым эфиром и высушивали до постоянной массы. Получено 73 г (0.226 моль) (Et₃NH)₂[B₁₀H₁₀] (80% от теор.)

Декагидро-клозо-декаборат (2-) тетрабутиламмония $(Bu_4N)_2[B_{10}H_{10}]$ получали по обменной реакции $(Et_3NH)_2[B_{10}H_{10}]$ с $(Bu_4N)Br$. Конечный продукт перекристаллизовывали из CH_2Cl_2 . Из 30.00 г (0.092 моль) $(Et_3NH)_2[B_{10}H_{10}]$ и 59.41 г (0.184 моль) $(Bu_4N)Br$ получено 54.52 г (0.090 моль) $(Bu_4N)_2[B_{10}H_{10}]$ (98% от теор.)

Ундекагидродекаборат(1–) тетрабутиламмония (Bu_4N)[$B_{10}H_{11}$]. К раствору 40.00 г (0.066 моль) (Bu_4N)₂[$B_{10}H_{10}$] в 150 мл НСООН при перемешивании добавляли 50 мл CF₃COOH. Образующийся при этом белый осадок отделяли вакуумным фильтрованием, затем промывали на фильтре диэтиловым эфиром (2×40 мл). Полученные мелкие белые кристаллы высушивали в эксикаторе над КОН в течение 3–4 дней. Получено 19.67 г (0.054 моль) (Bu_4N)[$B_{10}H_{11}$] (81.5% от теор.).

2.2.2. Синтез сульфониевых производных клозо-декаборатного аниона

Синтез исходных сульфониевых производных осуществляли по разработанным в нашей лаборатории методикам [9,24,87].

$(Bu_4N)[2-B_{10}H_9SC(NMe_2)_2](1)$

 $(Bu_4N)[B_{10}H_{11}]$ 27.6 (10)Г, ммоль) смешивали с тетраметилтиомочевиной (4.17 г, 31.5 ммоль) и растирали в ступке до однородности и переносили в круглодонную колбу на 100 мл. Полученную смесь нагревали в течение 4-х часов в атмосфере сухого аргона (до прекращения выделения газа) при 90 °С. К полученной оранжевой массе добавляли после охлаждения 50 мл горячей дистиллированной воды и обрабатывали на ультразвуковой ванне до образования хлопьевидного отфильтровывали 2*30 осадка, который затем И промывали ΜЛ дистиллированной воды, 2*30 этилацетата и 2*30 мл диэтилового эфира. Выход

Данные элементного анализа для C21H57B10N3S - Вычислено (%): C 51.28; H 11.68; N 8.54; S 6.52; Найдено (%): C 51.01; H 11.72; N 8.42; S 6.36. ¹¹В ЯМР (CD₃CN, м.д.): 1.6 (d, 1B), -1.5 (d, 1B), -14.4 (s, 1B), -23.5 (d, 4B), -26.8 (d, 3B). ¹H ЯМР (CD₃CN, δ , м.д.): 3.26 (s, 12H, NC<u>H</u>₃), 3.17 (m, 8H, Bu₄N⁺), 1.67 (m, 8H, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.02 (t, 12H, Bu₄N⁺), 0.60– 2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.):183.1 (S<u>C</u>), 58.3 (Bu₄N⁺), 43.3 (N(<u>C</u>H₃)₂), 23.3 (Bu₄N⁺), 19.3 (Bu₄N⁺), 12.8 (Bu₄N⁺). ИК (CCl4): 2961, 2874, 2465, 2363, 1569, 1497, 1472, 1387, 1261, 1206, 1160, 1113, 1055, 993, 941, 875, 668 см⁻¹.

$(Bu_4N)_2[2-B_{10}H_9SH](2)$

 $(Bu_4N)[2-B_{10}H_9SC(NMe_2)_2]$ (1 г, 2 ммоль) помещали в круглодонную колбу на 25 мл и добавляли 5 МЛ ЭТИЛОВОГО спирта И 5 мл концентрированного раствора гидрозина. Кипятили с обратным холодильником в течение 2-х часов, затем добавляли 40% водный раствор тетрабутиламмония (Bu₄N)OH (1.32 мл, 2 ммоль) и кипятили еще один час. После охлаждения раствора отгоняли примерно ³/₄ растворителя на роторном 15 испарителе И добавляли ΜЛ дистиллированной воды. Осалок отфильтровывали и промывали 2*10 мл дистиллированной воды и 2*10 мл диэтилового эфира. Выход 1.17 г (1.85 ммоль, 91%)

Данные элементного анализа для C32H82B10N2S - Вычислено (%): C 60.51; H 13.01; N 4.41; S 5.05; Найдено (%): C 60.44; H 12.95; N 4.34; S 4.94. ¹¹В ЯМР (CD₃CN, м.д.): 0.8 (d, 2B), -17.3 (s, 1B), -22.9 (d, 4B), -24.4 (d, 2B), -27.0 (d, 1B). ¹H ЯМР (CD₃CN, м.д.): 3.15 (m, 8H, Bu₄N⁺), 1.66 (m, 8H, Bu₄N⁺), 1.43 (m, 8H, *n*-Bu4N+), 1.03 (t, 12H, *n*-Bu4N+), 0.60–2.10 (m, 9H, B10H9), -0.79 (s, S<u>H</u>). ¹³C ЯМР (CD₃CN, м.д.): 58.3 (2.29 (Bu₄N⁺), 23.2 (Bu₄N⁺), 19.3 (Bu₄N⁺), 12.8 (Bu₄N⁺). ИК (CCl4): 2957, 2872, 2438, 1475, 1380, 1143, 955, 880 см⁻¹.

$(Bu_4N)[2-B_{10}H_9S(i-Pr)_2](3)$

Соль (**Bu**₄**N**)₂[**2-B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль) и карбонат цезия (0.26 г, 0.78 ммоль) помещали в круглодонную колбу на 50 мл и приливали 10 мл диметилформамида и добавляли 2-бромпропан (0.3 мл, 3.3 ммоль). Раствор нагревали при 85 °C в течение 4 часов, затем отгоняли растворитель на роторном испарителе. К полученному твердому остатку приливали 20 мл дистиллированной воды и 20 мл петролейного эфира и обрабатывали на ультразвуковой ванне в течение 20 минут до образования хлопьевидного осадка. Образовавшийся осадок отфильтровывали и промывали 3*10 мл дистиллированной водой и 3*10 мл диэтилового эфира. Выход 88% (0.66 г, 1.38 ммоль)

Данные элементного анализа для C22H59B10NS - Вычислено (%): C 55.29; H 12.44; N 2.93; S 6.71; Найдено (%): C 55.08; H 12.47; N 2.89; S 6.53. ¹¹В ЯМР (CD₃CN, δ, м.д.): 4.1 (d, 1B), -3.2 (d, 1B), -15.7 (s, 1B), -24.8 (d, 2B), -25.1 (d, 3B), -28.1 (d, 2B). ¹H ЯМР (CD₃CN, δ, м.д.): 3.54 (m, 2H, SCH), 3.14 (m, 8H, Bu₄N⁺), 1.65 (m, 8H, Bu₄N⁺), 1.52 (d, 6H, CH(C<u>H</u>₃)₂), 1.41 (m, 8H, Bu₄N⁺), 1.01 (t, 12H, Bu₄N⁺), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 58.9 (Bu₄N⁺), 45.2 (S<u>C</u>H), 23.9 (Bu₄N⁺), 23.4 (CH(<u>C</u>H₃)₂), 19.7 (Bu₄N⁺), 13.5 (Bu₄N⁺). ИК (CCl₄): 2967, 2887, 2475, 1470, 1425, 1379, 1352, 1160, 1100, 1065, 991, 883 см⁻¹.

$(Bu_4N)[2-B_{10}H_9S(n-Pr)_2](4)$

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1-бромпропана (0.3 мл, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**Pr**)₂] (0.66 г, 1.39 ммоль). Выход 89%.

Данные элементного анализа для C22H59B10NS - Вычислено (%): C 55.29; H 12.44; N 2.93; S 6.71; Найдено (%): C 55.11; H 12.33; N 2.91; S 6.55. ¹¹В ЯМР (CD₃CN, δ, м.д.): 3.5 (d, 1B), -2.4 (d, 1B), -15.5 (s, 1B), -24.6 (d, 2B), -

25.1 (d, 3B), -28.2 (d, 2B). ¹H *ЯМР* (CD₃CN, δ , м.д.): 3.14 (m, 8H, Bu₄N⁺), 2.72 (dt, 4H, SC<u>H</u>_AH_B), 1.65 (m, 8H, Bu₄N⁺), 1.41 (m, 12H, C<u>H</u>₂CH₃, Bu₄N⁺), 1.01 (t, 12H, Bu₄N⁺), 0.95 (t, 6H, CH₂C<u>H</u>₃), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C *ЯМР* (CD₃CN, м.д.): 58.9 (Bu₄N⁺), 41.3 (S<u>C</u>H₂), 23.9 (Bu₄N⁺), 22.4 (<u>C</u>H₂CH₃), 19.7 (Bu₄N⁺), 13.5 (Bu₄N⁺), 13.2 (CH₂<u>C</u>H₃). *ИК* (CCl₄): 2961, 2877, 2471, 1472, 1422, 1381, 1359, 1160, 1101, 1066, 998, 877 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9S(n-Bu)_2](5)$

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1-бромбутана (0.36 мл, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**Bu**)₂] (0.68 г, 1.35 ммоль). Выход 86%.

Данные элементного анализа для C24H63B10NS - Вычислено (%): C 56.97; H 12.55; N 2.77; S 6.34; Hайдено (%): C 56.67; H 12.67; N 2.75; S 6.17. ¹¹В ЯМР (CD₃CN, δ , м.д.): 3.5 (d, 1B), -2.3 (d, 1B), -15.5 (s, 1B), -24.5 (d, 2B), -25.2 (d, 3B), -28.2 (d, 2B). ¹H ЯМР (CD₃CN, δ , м.д.): 3.14 (m, 8H, Bu₄N⁺), 2.72 (dt, 4H, SC<u>H</u>_AH_B), 1.65 (m, 12H, SCH₂C<u>H</u>₂, Bu₄N⁺), 1.41 (m, 12H, C<u>H</u>₂CH₃, Bu₄N⁺), 1.01 (t, 12H, Bu₄N⁺), 0.95 (t, 6H, CH₂C<u>H</u>₃), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 58.9 (Bu₄N⁺), 41.5 (S<u>C</u>H₂), 28.3 (SCH₂<u>C</u>H₂) 23.9 (Bu₄N⁺), 21.7 (<u>C</u>H₂CH₃), 19.7 (Bu₄N⁺), 13.5 (Bu₄N⁺), 13.1 (CH₂<u>C</u>H₃). ИК (CCl₄): 2960, 2875, 2474, 1472, 1420, 1381, 1363, 1164, 1107, 1065, 993, 883 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9S(n-C_8H_{17})_2]$ (6)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1-бромоктана (0.57 мл, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-C₈**H**₁₇)₂] (0.85 г, 1.38 ммоль). Выход 88%.

Данные элементного анализа для C32H79B10NS - Вычислено (%): C 62.17; H 12.88; N 2.26; S 5.19; Найдено (%): C 61.99; H 12.76; N 2.20; S 5.04. 11B ЯМР (CD3CN, м.д.): 3.5 (d, 1B), -2.3 (d, 1B), -15.5 (s, 1B), -24.5 (d, 2B), - 25.2 (d, 3B), -28.2 (d, 2B). ¹H ЯМР (CD₃CN, δ , м.д.): 3.14 (m, 8H, Bu₄N⁺), 2.72 (dt, 4H, SC<u>H</u>_AH_B), 1.65 (m, 12H, SCH₂C<u>H</u>₂, Bu₄N⁺), 1.41 (m, 12H, C<u>H</u>₂CH₃, Bu₄N⁺), 1.28 (m, 16H, C4<u>H</u>₂-C7<u>H</u>₂), 1.01 (t, 12H, Bu₄N⁺), 0.95 (t, 6H, CH₂C<u>H</u>₃), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 58.9 (Bu₄N⁺), 41.5 (S<u>C</u>H₂), 28.3 (SCH₂<u>C</u>H₂) 23.9 (Bu₄N⁺), 21.7-18.8 (<u>C</u>3H₂-<u>C</u>7H₂), 19.7 (Bu₄N⁺), 13.5 (Bu₄N⁺), 13.1 (CH₂<u>C</u>H₃). *UK* (CCl₄): 2973, 2871, 2475, 1471, 1431, 1379, 1357, 1258, 1161, 1101, 1072, 985, 878 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9S(n-C_{12}H_{25})_2] (7)$

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1-бромдодекана (0.79 мл, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-C₁₂**H**₂₅)₂] (1.04 г, 1.32 ммоль). Выход 84%.

Данные элементного анализа для C40H95B10NS - Вычислено (%): C 65.78; H 13.11; N 1.92; S 4.39; Hайдено (%): C 65.47; H 13.02; N 1.89; S 4.29. ¹H ЯМР (CD₃CN, δ , м.д.): 3.14 (m, 8H, Bu₄N⁺), 2.72 (dt, 4H, SC<u>H</u>_AH_B), 1.65 (m, 12H, SCH₂C<u>H</u>₂, Bu₄N⁺), 1.41 (m, 12H, C<u>H</u>₂CH₃, Bu₄N⁺), 1.28 (m, 32H, C4<u>H</u>₂-C11<u>H</u>₂), 1.01 (t, 12H, Bu₄N⁺), 0.95 (t, 6H, CH₂C<u>H</u>₃), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 58.9 (Bu₄N⁺), 41.5 (S<u>C</u>H₂), 28.4 (SCH₂<u>C</u>H₂) 23.9 (Bu₄N⁺), 21.7-18.8 (<u>C</u>3H₂-<u>C</u>11H₂), 19.7 (Bu₄N⁺), 13.5 (Bu₄N⁺), 13.1 (CH₂<u>C</u>H₃). ИК (CCl₄): 2969, 2921, 2855, 2488, 1633, 1417, 1415, 1380, 1341, 1272, 1065, 993, 901, 883, 821, 788, 534 см⁻¹.

$(Bu_4N)[2-B_{10}H_9S(n-C_{18}H_{37})_2](8)$

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1-бромоктадекана (1.1 г, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-C₁₈**H**₃₇)₂] (1.15 г, 1.29 ммоль). Выход 82%.

Данные элементного анализа для C52H119B10NS - Вычислено (%): C 69.49; H 13.34; N 1.56; S 3.57; Найдено (%): C 69.18; H 13.27; N 1.53; S 3.47.

¹H ЯМР (CD₃CN, δ , м.д.): 3.14 (m, 8H, Bu₄N⁺), 2.72 (dt, 4H, SC<u>H</u>_AH_B), 1.65 (m, 12H, SCH₂C<u>H</u>₂, Bu₄N⁺), 1.41 (m, 12H, C<u>H</u>₂CH₃, Bu₄N⁺), 1.28 (m, 56H, C4<u>H</u>₂-C17<u>H</u>₂), 1.01 (t, 12H, Bu₄N⁺), 0.95 (t, 6H, CH₂C<u>H</u>₃), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 58.9 (Bu₄N⁺), 41.5 (S<u>C</u>H₂), 28.4 (SCH₂<u>C</u>H₂) 23.9 (Bu₄N⁺), 21.7-18.8 (<u>C</u>3H₂-<u>C</u>17H₂), 19.7 (Bu₄N⁺), 13.5 (Bu₄N⁺), 13.1 (CH₂<u>C</u>H₃). *I*K (CCl₄): 2963, 2920, 2847, 2488, 1630, 1469, 1420, 1380, 1328, 1267, 1154, 1108, 1066, 1028, 990, 943, 880, 830, 534 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9S(CH_2Ph)_2](9)$

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и бензилбромида (0.39 мл, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(CH₂**Ph**)₂] (0.79 г, 1.38 ммоль). Выход 88%.

Данные элементного анализа для C30H59B10NS - Вычислено (%): C 62.77; H 10.36; N 2.44; S 5.58; Найдено (%): C 62.48; H 10.29; N 2.37; S 5.50. ¹¹В ЯМР (CD₃CN, м.д.): 4.6 (d, 1B), -2.5 (d, 1B), -14.6 (s, 1B), -24.6 (d, 5B), -28.1 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 7.29 (m, 6H, Ph), 7.14 (m, 4H, Ph), 4.12 (d, 2H, SC<u>H</u>_AH_B), 3.87 (d, 2H, SCH_A<u>H</u>_B), 3.14 (m, 8H, Bu₄N⁺), 3.15 (m, 8H, Bu₄N⁺), 1.65 (m, 8H, Bu₄N⁺), 1.42 (m, 8H, Bu₄N⁺), 1.01(t, 12H, Bu₄N⁺), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 133.7, 130.2, 129.3, 128.8 (Ph), 58.9 (Bu₄N⁺), 47.8 (S<u>C</u>H₂), 24.0 (Bu₄N⁺), 19.9 (Bu₄N⁺), 13.5 (Bu₄N⁺). ИК (CC14): 3065, 3030, 2961, 2876, 2460, 1603, 1496, 1469, 1419, 1380, 1363, 1319, 1239, 1167, 1076, 1029, 993, 943, 925, 894, 707, 667, 560, 481 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9-cyclo-S(CH_2)_4]$ (10)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1,4-дибромбутана (0.2 мл, 1.73 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉-*cyclo*-**S**(**CH**₂)₄] (0.6 г, 1.35 ммоль). Выход 86%. Данные элементного анализа для C20H53B10NS - Вычислено (%): C 53.64; H 11.93; N 3.13; S 7.16; Найдено (%): C 53.32; H 12.01; N 3.10; S 7.04. ¹¹B (CD₃CN, м.д.): 1.8 (d, 1B), -4.9 (d, 1B), -17.0 (d, 1B), -26.5 (d, 2B), -27.4 (d, 3B), -30.6 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 3.08 (m, 10H, SC<u>H</u>_aH_b, Bu₄N⁺), 2.81 (m, 2H, SCH_a<u>H</u>_b), 2.03 (m, 2H, SCH₂C<u>H</u>_aH_b), 1.83 (m, 2H, SCH₂CH_a<u>H</u>_b), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (m, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu₄N⁺), 44.4 (S<u>C</u>H₂), 30.1 (SCH₂<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2960, 2933, 2877, 2473, 1480, 1410, 1380, 1299, 1154, 1067, 1004, 997, 941, 867 см⁻¹.

$(Bu_4N)[2-B_{10}H_9-cyclo-S(CH_2)_4O]$ (11)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 2-бромэтилового эфира (0.22 мл, 1.73 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉-*cyclo*-**S**(CH₂)₄**O**] (0.63 г, 1.36 ммоль). Выход 87%.

Данные элементного анализа для C20H53B10NOS - Вычислено (%): C 51.79; H 11.52; N 3.02; S 6.91; Найдено (%): C 51.58; H 11.47; N 2.94; S 6.72. ¹¹B (CD₃CN, м.д.): 1.6 (d, 1B), -4.8 (d, 1B), -18.9 (d, 1B), -26.4 (d, 2B), -27.3 (d, 3B), -30.7 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 4.07 (m, 2H, SC<u>H</u>_aH_b), 3.69 (m, 2H, SCH₂C<u>H</u>_aH_b), 3.08 (m, 8H, Bu₄N⁺), 2.86 (m, 2H, SCH_a<u>H</u>_b), 2.63 (m, 2H, SCH₂CH_a<u>H</u>_b), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (m, 8H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 65.5 (SCH₂<u>C</u>H₂), 59.3 (Bu₄N⁺), 36.8 (S<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2961, 2935, 2873, 2470, 1487, 1411, 1374, 1301, 1150, 1065, 1001, 987, 931, 862 cm⁻¹.

$(Bu_4N)_2[2-B_{10}H_9-cyclo-S(CH_2)_4S-2-B_{10}H_9]$ (12)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и 1,2-дибромэтана (0.22 мл, 1.73 ммоль) получено (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉-*cyclo*-**S**(**CH**₂)₄**S**-**2**-**B**₁₀**H**₉] (0.58 г, 0.69 ммоль). Выход 89%. Данные элементного анализа для C36H98B20N2S2 - Вычислено (%): C 51.5; H 11.76; N 3.34; S 7.64; Hайдено (%): C 51.31; H 11.64; N 3.27; S 7.57. ¹¹B (CD₃CN, м.д.): 1.6 (d, 1B), -4.8 (d, 1B), -18.9 (d, 1B), -26.4 (d, 2B), -27.3 (d, 3B), -30.7 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 3.53 (m, 2H, SCH₂), 3.49 (m, 2H, SCH₂), 3.08 (m, 8H, Bu₄N⁺), 2.91 (m, 2H, SCH₂), 2.87 (m, 2H, SCH₂), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (m, 8H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu₄N⁺), 34.2 (S<u>C</u>H₂), 34.1 (S<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2960, 2931, 2877, 2481, 1485, 1410, 1388, 1301, 1150, 1067, 1022, 1005, 990, 941, 897 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9S(CH_2N(CO)_2C_6H_4)_2]$ (13)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и *N*-(бромметил) фталимида (0.79 г, 3.3 ммоль) получено (**Bu**₄**N**)[**2**- **B**₁₀**H**₉**S**(**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.98 г, 1.38 ммоль). Выход 88%.

Данные элементного анализа для C34H57B10N3O4S - Вычислено (%): C 57.35; H 8.07; N 5.90; S 4.50; Найдено (%): C 57.19; H 8.01; N 5.77; S 4.43. ¹¹В ЯМР (CD₃CN, м.д.): 3.5 (d, 1B), -4.4 (d, 1B), -18.2 (s, 1B), -26.5 (d, 5B), -30.1 (d, 2B). ¹Н ЯМР (CD₃CN, м.д.): 7.79 (m, 8H, Ph), 5.08 (d, 2H, SC<u>H</u>_aH_b), 4.95 (d, 2H, SCH_a<u>H</u>_b), 3.08 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.36 (m, 8H, Bu₄N⁺), 0.96 (t, 12H, Bu₄N⁺), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 167.6 (<u>C</u>O), 135.8, 132.6, 124.4 (Ph), 59.3 (Bu₄N⁺), 49.6 (S<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 3466,5 3091, 3062, 3027, 2959, 2933,2871, 2520, 2477, 1770, 1711, 1613, 1468, 1423, 1388, 1362, 1320, 1186, 1100, 1087, 1026, 978, 931, 860, 796, 717, 661, 603, 527 см⁻¹.

$(Bu_4N)[2-B_{10}H_9S(CH_2CH_2N(CO)_2C_6H_4)_2]$ (14)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и N-(бромэтил) фталимида (0.84 г, 3.3 ммоль) получено (**Bu**₄**N**)[2-**B**₁₀**H**₉**S**(**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.99 г, 1.35 ммоль). Выход 86%.

Данные элементного анализа для C36H61B10N3O4S - Вычислено (%): C 58.42; H 8.31; N 5.68; S 4.33; Hайдено (%): C 58.26; H 8.27; N 5.57; S 4.23. ¹¹B ЯМР (CD₃CN, м.д.): 2.4 (d, 1B), -4.5 (d, 1B), -17.3 (s, 1B), -26.6 (d, 5B), -30.4 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 7.78 (m, 8H, Ph_a), 7.71 (m, 8H, Ph_b), 3.99, 3.90 (m, 4H, SCH₂C<u>H₂</u>), 3.08 (m, 12H, Bu₄N⁺, SC<u>H₂</u>), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.96 (t, 12H, Bu₄N⁺), 0.60–2.10 (m, 9H, B₁₀<u>H₉</u>). ¹³C ЯМР(CD₃CN, м.д.): 168.8 (<u>C</u>O), 135.2, 133.0, 123.9 (Ph), 59.3 (Bu₄N⁺), 41.5 (S<u>C</u>H₂), 35.0 (SCH₂<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.7 (Bu₄N⁺). ИК (CCl₄): 3466, 3098, 3064, 3031, 2959, 2930,2874, 2515, 2481, 1772, 1714, 1613, 1467, 1430, 1396, 1361, 1322, 1186, 1105, 1087, 1026, 977, 933, 864, 797, 717, 668, 605, 530 см⁻¹.

$(Bu_4N)[2-B_{10}H_9S(CH_2CH_2CH_2N(CO)_2C_6H_4)_2]$ (15)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и N-(бромпропил) фталимида (0.88 г, 3.3 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(CH₂CH₂CH₂CH₂N(CO)₂C₆H₄)₂] (1.06 г, 1.38 ммоль). Выход 88%.

Данные элементного анализа для C38H65B10N3O4S - Вычислено (%): C 59.42; H 8.53; N 5.47; S 4.17; Найдено (%): C 59.18; H 8.49; N 5.32; S 4.08. ¹¹В ЯМР (CD₃CN, м.д.): 2.9 (d, 1B), -3.8 (d, 1B), -16.7 (s, 1B), -26.3 (d, 5B), -29.5 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 7.79 (m, 8H, Ph), 3.65 (t, 4H, CH₂C<u>H₂), 3.08 (m, 8H, Bu₄N⁺), 2.70 (m, 4H, SC<u>H₂), 2.02 (m, 4H, SCH₂C<u>H₂), 1.60 (m, 8H,</u> Bu₄N⁺), 1.36 (m, 8H, Bu₄N⁺), 0.96 (t, 12H, Bu₄N⁺), 0.60–2.10 (m, 9H, B₁₀<u>H₉). ¹³C</u> ЯМР (CD₃CN, м.д.): 169.2 (<u>CO</u>), 135.1, 133.2, 123.8 (Ph), 59.3 (Bu₄N⁺) 39.96 (S<u>C</u>H₂), 37.1 (CH₂<u>C</u>H₂), 26.2 (SCH₂<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 3466, 3082, 3060, 3025, 2956, 2928, 2875, 2517, 2467,</u></u> 1773,, 1704, 1613, 1465, 1435, 1396, 1372, 1323, 1188, 1169, 1107, 1084, 1010, 989, 941, 880,789, 716, 645, 599, 528 см⁻¹.

$(Bu_4N)[2-B_{10}H_9S(CH_2COOC_2H_5)_2]$ (16)

Получали по аналогичной методике для соединения **3**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉**SH**] (1 г, 1.57 ммоль), Cs₂CO₃ (0.26 г, 0.78 ммоль) и этилбромацетата (0.36 мл, 3.3 ммоль) получено (**Bu**₄**N**)[**2**- **B**₁₀**H**₉**S**(**CH**₂**COOC**₂**H**₅)₂] (0.77 г, 1.36 ммоль). Выход 87%.

Данные элементного анализа для C24H59B10NO4S - Вычислено (%): C 50.94; H 10.51; N 2.47; S 5.67; Найдено (%): C 50.78; H 10.54; N 2.44; S 5.53. ¹¹В ЯМР (CD3CN, м.д.): 4.7 (d, 1B), -3.0 (d, 1B), -15.3 (s, 1B), -24.3 (d, 5B), - 28.5 (d, 2B). ¹H ЯМР (CD₃CN, м.д.): 4.23dq, 4H, OC<u>H</u>₂), 3.80(d, 2H, SC<u>H</u>_AH_B), 3.66 (d, 2H, SCH_A<u>H</u>_B), 3.17 (m, 8H, Bu₄N⁺), 1.67 (m, 8H, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.30 (t, 6H, OCH₂<u>C</u>H₃) 1.03 (t, 12H, Bu₄N⁺), 0.60–2.10 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₃CN, м.д.): 165.9 (<u>C</u>OO), 62.8 (O<u>C</u>H₂), 59.4 (Bu₄N⁺), 44.9 (S<u>C</u>H₂), 23.9 (Bu₄N⁺), 19.9 (Bu₄N⁺), 13.9 (CH₂<u>C</u>H₃), 13.4 (Bu₄N⁺). ИК (CCl4): 2962, 2906, 2876, 2463, 2430, 1739, 1483, 1464, 1382, 1299, 1181, 1144, 1097, 1023, 944, 921, 882, 859 см⁻¹.

2.2.3. Синтез аммониевых производных клозо-декаборатного аниона

Синтез аммониевых производных проводили по известным методикам алкилирования аммониевого производного *клозо*-додекаборатного аниона [30].

$(Bu_4N)[2-B_{10}H_9NCCH_3]$ (17)

Соль ($\mathbf{Bu_4N}$)[$\mathbf{B_{10}H_{11}$] (10 г, 27.6 ммоль) помещали в круглодонную колбу на 50 мл и приливали 20 мл ацетонитрила CH₃CN. Полученную реакционную смесь кипятили с обратным холодильником в атмосфере сухого аргона в течение 4 часов. После чего раствор упаривали на роторном испарителе и к полученному твердому остатку приливали 30 мл дистиллированной воды и обрабатывали на ультразвуковой ванне в течение

10 минут. Полученный хлопьевидный осадок отфильтровывали и промывали 2*30 мл дистиллированной водой и 2*30 мл диэтиловым эфиром. Выход 10.2 г (92%).

Данные элементного анализа для C18H48B10N2 – Вычислено (%): C 53.95; H 12.07; N 6.99; Найдено (%): C 53.73; H 11.96; N 6.79. ¹¹B ЯМР (CD₃CN, м.д.): 0.7 (d, 1B), -2.3 (d, 1B), -20.6 (s, 1B), -25.9 (d, 4B), -28.5 (d, 3B). ¹H ЯМР (CD₃CN, м.д.): 3.08 (m, 8H, Bu₄N⁺), 2.59 (s, 3H, CH3), 1.81 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 175.3 (N<u>C</u>), 59.4 (Bu₄N⁺), 24.3 (Bu₄N⁺), 20.4 (Bu₄N⁺). 13.8 (Bu₄N⁺), 3.5 (<u>C</u>H₃). ИК (CCl₄): 2967, 2905, 2877, 2470, 2427, 1710, 1480, 1431, 1329, 1170, 1104, 1005, 948, 886, 641, 531 см⁻¹.

$(Bu_4N)[2-B_{10}H_9NH_3](17)$

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**NCCH**₃] (1 г, 2.4 ммоль) помещали в колбу на 50 мл и приливали 20 мл 95-% этанола, затем к полученной реакционной смеси добавляли 5 мл конц. раствора N₂H₄*H₂O и 10 мл дистиллированной воды. Реакционный раствор кипятили в течение 5 часов при постоянном перемешивании. После этого реакционную смесь концентрировали на роторном испарителе и промывали твердый остаток последовательно водой и этанолом. Твердый продукт перекристаллизовывали из метанола. Выход 0.82 г (87%)

Данные элементного анализа для C16H48B10N2 - Вычислено (%): C 51.02; H 12.84; N 7.44; Hайдено (%): C 50.86; H 12.78; N 7.36. ¹¹B ЯМР (CD₃CN, м.д.): 1.0 (d, 1B), -2.8 (d, 1B), -13.7 (s, 1B), -22.9 (d, 2B), -28.0 (d, 2B), -28.0 (d, 2B), -28.0 (d, 3B). ¹H ЯМР (CD₃CN, м.д.): 4.31 (s, 3H, NH₃), 3.08 (m, 8H, Bu₄N⁺), 1.81 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.4 (Bu₄N⁺), 24.3 (Bu₄N⁺), 20.4 (Bu₄N⁺). 13.8 (Bu₄N⁺). ИК (CCl₄): 2971, 2912, 2871, 2470, 1731, 1476, 1455, 1344, 1271, 1170, 1141, 1020, 941, 814, 671 см⁻¹.

$(Bu_4N)[2-B_{10}H_9N(n-Pr)_3]$ (18)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль) и гидроксид калия **КОН** (1.12 г, 20 ммоль) помещали в колбу на 25 мл и приливали 10 мл диметилформамида. К полученной реакционной смеси добавляли 1бромпропан (0.61 мл, 6.65 ммоль) и оставляли перемешиваться в течение 2 дней при комнатной температуре. После чего, полученную реакционную смесь упаривали на роторном испарителе, а к полученному твердому остатку приливали 10 мл смеси ацетонитрил/дихлорметан в соотношении 1/1 и обрабатывали на ультразвуковой ванне в течение 10 минут. Полученный раствор отфильтровывали от бромида и остатков гидроксида калия, и упаривали. Дальнейшую очистку аммониевого производного проводили с помощью флэш-хроматографии (SiO₂). Выход 0.61 г (91%).

Данные элементного анализа для C25H66B10N2 - Вычислено (%): C 59.7; H 13.23; N 5.57; Hайдено (%): C 59.49; H 13.17; N 5.47. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 1.2 (d, 1B), -3.9 (s, 1B), -5.0 (d, 1B), -23.7 (d, 4B), -29.3 (d, 3B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.42 (m, 8H, Bu₄N⁺), 2.95 (m, 6H, NC<u>H</u>₂), 1.81 (m, 8H, Bu4N⁺), 1.62 (m, 6H, NCH₂C<u>H</u>₂), 1.44 (m, 8H, Bu₄N⁺), 0.98 (t, 12H, Bu₄N⁺), 0.79 (t, 9H, C<u>H</u>₃). ¹³C ЯМР ((CD₃)₂CO, м.д.): 63.5 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 24.5 (Bu₄N⁺), 20.4 (Bu₄N⁺), 17.3 (NCH₂<u>C</u>H₂), 13.9 (Bu₄N⁺), 11.5 (<u>C</u>H₃). ИК (CCl₄): 2963, 2938, 2875, 2469, 1471, 1378, 1320, 1065, 1001, 959, 884, 845, 823, 763, 741 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9N(n-Bu)_3]$ (19)

Получали по аналогичной методике для соединения 22. Из (**Bu**₄**N**)[2-**B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль), КОН (1.12 г, 20 ммоль) и 1-бромбутана (0.72 мл, 6.65 ммоль) получено (**Bu**₄**N**)[2-**B**₁₀**H**₉**N**(*n*-**Bu**)₃] (0.65 г, 1.2 ммоль). Выход 90%.

Данные элементного анализа для C28H72B10N2 - Вычислено (%): C 61.71; H 13.32; N 5.14; Найдено (%): C 61.49; H 13.21; N 4.99. ¹¹В ЯМР

((CD₃)₂CO, м.д.): 1.2 (d, 1B), -3.9 (s, 1B), -5.0 (d, 1B), -23.7 (d, 4B), -29.3 (d, 3B). ¹H *ЯМР* ((CD₃)₂CO, м.д.): 3.42 (m, 8H, Bu₄N⁺), 3.01 (m, 6H, NC<u>H</u>₂), 1.81 (m, 8H, Bu4N⁺), 1.62 (m, 6H, NCH₂C<u>H</u>₂), 1.44 (m, 8H, Bu₄N⁺), 1.22 (m, 6H, C<u>H</u>₂CH₃), 0.98 (t, 12H, Bu₄N⁺), 0.88 (t, 9H, C<u>H</u>₃). ¹³C *ЯМР* ((CD₃)₂CO, м.д.): 61.7 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 26.0 (NCH₂<u>C</u>H₂), 24.5 (Bu₄N⁺), 21.0 (<u>C</u>H₂CH₃), 20.4 (Bu₄N⁺), 14.1 (<u>C</u>H₃), 13.9 (Bu₄N⁺). *IK* (CCl₄): 2970, 2948, 2870, 2474, 1478, 1368, 1327, 1072, 1005, 954, 891, 840, 830, 770, 731 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9N(n-C_8H_{17})_3]$ (20)

Получали по аналогичной методике для соединения 22. Из (**Bu**₄**N**)[2-**B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль), КОН (1.12 г, 20 ммоль) и 1-бромоктана (1.16 мл, 6.65 ммоль) получено (**Bu**₄**N**)[2-**B**₁₀**H**₉**N**(*n*-**C**₈**H**₁₇)₃] (0.82 г, 1.16 ммоль). Выход 87%.

Данные элементного анализа для C40H96B10N2 - Вычислено (%): C 67.35; H 13.56; N 3.93; Найдено (%): C 67.09; H 13.5; N 3.88. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 1.2 (d, 1B), -3.9 (s, 1B), -5.0 (d, 1B), -23.7 (d, 4B), -29.3 (d, 3B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.43 (m, 8H, Bu₄N⁺), 3.01 (m, 6H, NC<u>H</u>₂), 1.81 (m, 8H, Bu4N⁺), 1.64 (m, 6H, NCH₂C<u>H</u>₂), 1.44 (m, 8H, Bu₄N⁺), 1.27 (m, 30H, C3<u>H</u>₂-C7<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.88 (t, 9H, C<u>H</u>₃). ¹³C ЯМР ((CD₃)₂CO, м.д.): 62.0 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>7H₂), 23.3 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.4 (CH₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2970, 2928, 2865, 2476, 1466, 1388, 1310, 1072, 996, 966, 879, 852, 816, 770, 736 см⁻¹.

$(Bu_4N)[2-B_{10}H_9N(n-C_{12}H_{25})_3]$ (21)

Получали по аналогичной методике для соединения **22**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль), КОН (1.12 г, 20 ммоль) и 1-бромдодекана (1.59 мл, 6.65 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (1.02 г, 1.16 ммоль). Выход 87%.

Данные элементного анализа для C52H120B10N2 - Вычислено (%): C 70.84; H 13.72; N 3.18; Найдено (%): C 70.69; H 13.76; N 3.16. ¹¹В ЯМР

((CD₃)₂CO, м.д.): 1.2 (d, 1B), -3.9 (s, 1B), -5.0 (d, 1B), -23.7 (d, 4B), -29.3 (d, 3B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.43 (m, 8H, Bu₄N⁺), 3.01 (m, 6H, NC<u>H₂</u>), 1.81 (m, 8H, Bu4N⁺), 1.64 (m, 6H, NCH₂C<u>H₂</u>), 1.44 (m, 8H, Bu₄N⁺), 1.27 (m, 54H, C3<u>H₂</u>-C11<u>H₂</u>), 0.98 (t, 12H, Bu₄N⁺), 0.88 (t, 9H, C<u>H₃</u>). ¹³C ЯМР ((CD₃)₂CO, м.д.): 62.0 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>11H₂), 23.3 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.4 (CH₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2973, 2933, 2880, 2462, 1476, 1368, 1325, 1060, 1008, 954, 891, 838, 828, 753, 748 cm⁻¹.

$(Bu_4N)[2-B_{10}H_9N(n-C_{18}H_{37})_3]$ (22)

Получали по аналогичной методике для соединения 22. Из (**Bu**₄**N**)[2-**B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль), КОН (1.12 г, 20 ммоль) и 1-бромоктадекана (2.22 г, 6.65 ммоль) получено (**Bu**₄**N**)[2-**B**₁₀**H**₉**N**(*n*-**C**₁₈**H**₃₇)₃] (1.23 г, 1.09 ммоль). Выход 82%.

Данные элементного анализа для C70H156B10N2 - Вычислено (%): C 74.13; H 13.86; N 2.47; Найдено (%): C 74.01; H 13.74; N 2.42. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 1.2 (d, 1B), -3.9 (s, 1B), -5.0 (d, 1B), -23.7 (d, 4B), -29.3 (d, 3B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.43 (m, 8H, Bu₄N⁺), 3.01 (m, 6H, NC<u>H</u>₂), 1.81 (m, 8H, Bu4N⁺), 1.64 (m, 6H, NCH₂C<u>H</u>₂), 1.44 (m, 8H, Bu₄N⁺), 1.27 (m, 84H, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.88 (t, 9H, C<u>H</u>₃). ¹³C ЯМР ((CD₃)₂CO, м.д.): 62.0 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>17H₂), 23.3 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.4 (CH₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2973, 2933, 2870, 2479, 1466, 1385, 1313, 1065, 1008, 954, 894, 838, 828, 756, 748 см⁻¹.

2.2.4. Синтез хлорированных сульфониевых производных

$(Bu_4N)[2-B_{10}Cl_9SC(NMe_2)_2]$ (23)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**SC**(**NMe**₂)₂] (0.5 г, 1.02 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °C, после чего медленно по каплям приливали 10-и кратный избыток сульфурилхлорида (7.39 мл, 91.5 ммоль) в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 5 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. К полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл петролейного эфира и обрабатывали на ультразвуковой ванне в течение 20 минут. Раствор декантировали и повторяли процедуру еще раз. Полученный осадок отфильтровывали и последовательно промывали 2*10 мл петролейным эфиром, 2*10 мл дистиллированной воды и 2*10 диэтиловым эфиром. Выход 0.71 г, 0.89 ммоль (87%).

Данные элементного анализа для C21H48B10Cl9N3S - Вычислено (%): C 31.45; H 6.03; N 5.24; S 4.00; Найдено (%): C 31.30; H 6.00; N 5.10; S 3.90. ¹¹B ЯМР ((CD₃)₂SO, м.д.): -3.4 (1B, B1), -5.5 (1B, B10), -12.0 (7B, B3-9), -16.6 (1B, B2). ¹H ЯМР ((CD₃)₂SO, м.д.): 3.26 (12H, s, NC<u>H₃</u>), 3.16 (m, 8H, Bu₄N⁺), 1.57 (m, 8H, Bu₄N⁺), 1.30 (m, 8H, Bu₄N⁺), 0.94 (t, 12H, Bu₄N⁺).). ¹³C ЯМР ((CD₃)₂SO, м.д.): 172.5 (S<u>C</u>), 57.5 (Bu₄N⁺), 44.3 (N<u>C</u>H₃), 23.1 (Bu₄N⁺), 19.2 (Bu₄N⁺), 13.5 (Bu₄N⁺). ИК (CCl₄): 2962, 2935, 2876, 1470, 1458, 1429, 1360, 1312, 1276, 1259, 1240, 1155, 1114, 1001, 925, 897, 881, 839, 786, 760, 560, 526 cm⁻¹.

$(Bu_4N)2[2-B_{10}Cl_9SH]$ (24)

Соль (**Bu**₄**N**)[**2-B**₁₀**Cl**₉**SC**(**NMe**₂)₂] (0.5 г, 0.62 ммоль) помещали в колбу на 25 мл и растворяли в 10 мл ацетонитрила. К полученному раствору приливали 5 мл концентрированного раствора гидразина $N_2H_4*H_2O$. После чего реакционную смесь нагревали до 60 °C и оставляли перемешиваться в течение 2 часов в атмосфере сухого аргона. Затем колбу охлаждали до комнатной температуры и приливали 0.4 мл 40% водного раствора гидроксида тетрабутиламмония (Bu₄N)OH (0.16 г, 0.62 ммоль). Раствор упаривали на роторном испарителе, а к полученной вязкой массе приливали 10 мл дистиллированной воды и обрабатывали на ультразвуковой ванне в течение 10 минут до образования хлопьеобразного осадка. Полученный осадок отфильтровывали и последовательно промывали 2*10 мл дистиллированной воды и 2*10 диэтиловым эфиром. Выход 0.52 г, 0.55 ммоль (89%).

Данные элементного анализа для C32H73B10Cl9N2S - Вычислено (%): C 40.66; H 7.78; N 2.96; S 3.39; Найдено (%): C 40.47; H 7.71; N 2.90; S 3.27. ¹¹В ЯМР ((CD₃)₂SO, м.д.): -2.5 (2B, B1,10), -9.7 (7B, B3-9), -13.7 (1B, B2). ¹H ЯМР ((CD₃)₂SO, м.д.): 3.16 (m, 8H, Bu₄N⁺), 1.57 (m, 8H, Bu₄N⁺), 1.30 (m, 8H, Bu₄N⁺), 0.94 (t, 12H, Bu₄N⁺), -0.03 (1H, s, S<u>H</u>). ¹³C ЯМР ((CD₃)₂SO, м.д.): 57.5 (Bu₄N⁺), 23.1 (Bu₄N⁺), 19.2 (Bu₄N⁺), 13.5 (Bu₄N⁺). ИК (CCl₄):2961, 2922, 2870, 2851, 1470, 1421, 1371, 1360, 1307, 1245, 1179, 1150, 1107, 1001, 921, 899, 878, 842, 785, 762, 525 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(i-Pr)_2]$ (25)

Получали по аналогичной методике для соединения 23. Из (**Bu**₄**N**)[2-**B**₁₀**H**₉**S**(**i**-**Pr**)₂] (0.5 г, 1.05 ммоль) и SO₂Cl₂ (7.61 мл, 94.1 ммоль) получено (**Bu**₄**N**)[2-**B**₁₀**Cl**₉**S**(**i**-**Pr**)₂] (0.71 г, 0.90 ммоль). Выход 86%.

Данные элементного анализа для C22H50B10Cl9NS - Вычислено (%): C 33.54; H 6.39; N 1.78; S 4.07; Найдено (%): C 33.40; H 6.42; N 1.75; S 3.98. ¹¹B ЯМР (CD₃CN, м.д.): 0.2 (1B, B1), -4.0 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 4.15 (m, 2H, C1<u>H</u>), 3.07 (m, 8H, Bu₄N⁺), 1.60 (m, 14H, C2<u>H</u>₃, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu₄N⁺), 44.6 (C1), 24.3 (Bu₄N⁺), 22.4 (C2), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). IIK (CCl₄): 2965, 2936, 2876, 1470, 1418, 1381, 1362, 1312, 1245, 1156, 1111, 1002, 925, 881, 838, 796, 753, 525 cm⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(n-Pr)_2]$ (26)

Получали по аналогичной методике для соединения 23. Из (Bu₄N)[2-B₁₀H₉S(*n*-Pr)₂] (0.5 г, 1.05 ммоль) и SO₂Cl₂ (7.61 мл, 94.1 ммоль) получено (Bu₄N)[2-B₁₀Cl₉S(*n*-Pr)₂] (0.73 г, 0.92 ммоль). Выход 88%.

Данные элементного анализа для C22H50B10Cl9NS - Вычислено (%): C 33.54; H 6.39; N 1.78; S 4.07; Найдено (%): C 33.37; H 6.33; N 1.73; S 3.97. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): м.д. 3.34 (m, 4H, C1<u>H</u>₂), 3.07 (m, 8H, Bu₄N⁺), 1.79 (m, 6H, C2<u>H</u>₂), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 1.01 (t, 6H, C3<u>H</u>₃), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): м.д. 59.4 (Bu₄N⁺), 40.9 (C1), 24.3 (Bu₄N⁺), 21.3 (C2), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺), 13.0 (C3). ИК (CCl₄): 2965, 2936, 2876, 1470, 1418, 1381, 1362, 1310, 1244, 1183, 1156, 1111, 1002, 925, 881, 837, 784, 758, 525 cm⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(n-Bu)_2]$ (27)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**Bu**)₂] (0.5 г, 0.99 ммоль) и SO₂Cl₂ (7.19 мл, 88.9 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉**S**(*n*-**Bu**)₂] (0.74 г, 0.87 ммоль). Выход 88%.

Данные элементного анализа для C24H54B10Cl9NS - Вычислено (%): C 35.33; H 6.67; N 1.71; S 3.93; Hайдено (%): C 35.15; H 6.62; N 1.7; S 3.90. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 3.37 (m, 4H, C1<u>H</u>₂), 3.08 (m, 8H, Bu₄N⁺), 1.74 (m, 4H, C2<u>H</u>₂), 1.60 (m, 8H, Bu₄N⁺), 1.41 (m, 4H, C3<u>H</u>₂), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺), 09.91 (t, 6H, C4<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 59.4 (Bu₄N⁺), 38.8 (C1), 29.5 (C2), 24.3 (Bu₄N⁺), 22.1 (<u>C3</u>), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺), 13.5 (C4). ИК (CCl₄): 2960, 2925, 2873, 2851, 1470, 1418, 1381, 1363, 1309, 1244, 1183, 1151, 1003, 926, 894, 841, 789, 738, 527 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(n-C_8H_{17})_2]$ (28)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₈**H**₁₇)₂] (0.5 г, 0.81 ммоль) и SO₂Cl₂ (5.88 мл, 72.8 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉**S**(*n*-**C**₈**H**₁₇)₂] (0.65 г, 0.69 ммоль). Выход 86%.

Данные элементного анализа для C32H70B10Cl9NS - Вычислено (%): C 41.41; H 7.60; N 1.51; S 3.45; Hайдено (%): C 41.22; H 7.66; N 1.48; S 3.41. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 3.35 (m, 4H, C1<u>H</u>₂), 3.08 (m, 8H, Bu₄N⁺), 1.77 (m, 4H, C2<u>H</u>₂), 1.60 (m, 8H, Bu₄N⁺), 1.36 (m, 8H, Bu₄N⁺), 1.28 (m, 20H, C3<u>H</u>₂-C7<u>H</u>₂), 0.97 (t, 12H, Bu₄N⁺), 0.88 (t, 6H, C8<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 59.4 (Bu₄N⁺), 39.1 (C1), 32.4 (C2), 29.6 (C3), 29.3 (C4), 28.7 (C5), 27.5 (C6), 24.3 (Bu₄N⁺), 23.3 (C7), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺), 13.5 (C8). ИК (CCl₄):2961, 2927, 2871, 2856, 1469, 1419, 1381, 1363, 1307, 1243, 1183, 1154, 1110, 1003, 926, 895, 878, 841, 788, 761, 526 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(n-C_{12}H_{25})_2]$ (29)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₂**H**₂₅)₂] (0.5 г, 0.68 ммоль) и SO₂Cl₂ (4.98 мл, 61.6 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**C**l₉**S**(*n*-**C**₁₂**H**₂₅)₂] (0.61 г, 0.59 ммоль). Выход 87%.

Данные элементного анализа для C40H86B10Cl9NS - Вычислено (%): C 46.18; H 8.33; N 1.35; S 3.08; Найдено (%): C 45.92; H 8.26; N 1.32; S 3.04. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 3.36 (m, 4H, C1<u>H</u>₂), (m, 4H, C2<u>H</u>₂), 3.12 (m, 8H, Bu₄N⁺), 1,76 (m, 4H, C3<u>H</u>₂), 1.6 (m, 8H, Bu₄N⁺), 1.26 (m, 56H, C4<u>H</u>₂-C11<u>H</u>₂), 1.28 (m, 8H, Bu₄N⁺), 1.02 (t, 12H, Bu₄N⁺), 0.88 (t, 6H, C12<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 59.4 (Bu₄N⁺), 39.1 (C1), 32.4 (C2), 32.4-29.7 (C3-C8), 28.6 (C9), 27.6 (C10), 24.3 (Bu₄N⁺), 23.1 (C11), 20.3 (Bu₄N⁺), 14.3 (C12), 13.8 (Bu₄N⁺). ИК (CCl₄): ИК (CCl₄): 2962, 2927, 2873, 2855, 1469, 1418, 1381, 1363, 1307, 1242, 1183, 1155, 1112, 1004, 924, 895, 880, 840, 788, 760, 526 cm⁻¹.
$(Bu_4N)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2]$ (30)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.56 ммоль) и SO₂Cl₂ (4.05 мл, 50.1 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**C**l₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.57 г, 0.47 ммоль). Выход 84%.

Данные элементного анализа для C52H110B10Cl9NS - Вычислено (%): C 51.67; H 9.17; N 1.16; S 2.65; Hайдено (%): C 51.37; H 9.12; N 1.13; S 2.62. ¹¹В ЯМР (CD₃CN, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, B3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₃CN, м.д.): 3.42 (m, 4H, C1<u>H</u>₂), 3,28 (m, 4H, C2<u>H</u>₂), 3.12 (m, 8H, Bu₄N⁺), 1,76 (m, 4H, C3<u>H</u>₂), 1.6 (m, 8H, Bu₄N⁺), 1.26 (m, 56H, C4<u>H</u>₂-C17<u>H</u>₂), 1.28 (m, 8H, Bu₄N⁺), 1.02 (t, 12H, Bu₄N⁺), 0.88 (t, 6H, C18<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 59.4 (Bu₄N⁺), 39.1 (C1), 32.4 (C2), 32.4-29.7 (C3-C8), 29.2 (C14), 28.6 (C15), 27.6 (C16), 24.3 (Bu₄N⁺), 23.1 (C17), 20.3 (Bu₄N⁺), 14.3 (C18), 13.8 (Bu₄N⁺). ИК (CCl₄): 2962, 2926, 2875, 2855, 1470, 1420, 1380, 1307, 1238, 1185, 1156, 1112, 1004, 926, 895, 842, 785, 760, 526 см⁻ 1.

$(Bu_4N)[2-B_{10}Cl_9S(CH_2Ph)_2](31)$

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**Ph**)₂] (0.5 г, 0.87 ммоль) и SO₂Cl₂ (6.34 мл, 78.4 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉**S**(**CH**₂**Ph**)₂] (0.67 г, 0.76 ммоль). Выход 87%.

Данные элементного анализа для C30H50B10Cl9NS - Вычислено (%): C 40.76; H 5.70; N 1.58; S 3.63; Найдено (%): C 40.46; H 5.64; N 1.54; S 3.58. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 7.22, 7.08 (m, 12H, Ph), 4.67 (m, 4H, C1<u>H</u>₂), 3.07 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 131.9, 130.8, 130.1, 130.0 (Ph), 59.4 (Bu₄N⁺), 44.2 (C1), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2964, 2934, 2876, 1496, 1470, 1457, 1418, 1382, 1319, 1284, 1238, 1183, 1156, 1005, 926, 883, 849, 785, 699, 579, 524, 473, 453 cm⁻¹.

$(Bu_4N)[2-B_{10}Cl_9-cyclo-S(CH_2)_4]$ (32)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉-*cyclo*-**S**(**CH**₂)₄] (0.5 г, 1.11 ммоль) и SO₂Cl₂ (8.12 мл, 100.5 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉-*cyclo*-**S**(**CH**₂)₄] (0.74 г, 97.7 ммоль). Выход 88%.

Данные элементного анализа для C20H44B10Cl9NS - Вычислено (%): C 31.70; H 5.85; N 1.85; S 4.23; Найдено (%): C 31.58; H 5.90; N 1.83; S 4.13. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 3.72 (m, 2H, C1<u>H</u>_aH_b), 3.39 (m, 2H, C1H_a<u>H</u>_b), 3.07 (m, 8H, Bu₄N⁺), 2.32 (m, 2H, C2<u>H</u>_{2a}), 2.11 (C2H_{2b}), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.4 (Bu₄N⁺), 40.5 (C1), 31.1 (C2), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2963, 2935, 2876, 1471, 1458, 1429, 1382, 1360, 1312, 1276, 1259, 1242, 1155, 1114, 1001, 927, 897, 881, 839, 785, 760, 560, 526, 463 cm⁻¹.

$(Bu_4N)[2-B_{10}Cl_9-cyclo-S(CH_2)_4O]$ (33)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉-*cyclo*-**S**(**CH**₂)₄**O**] (0.5 г, 1.08 ммоль) и SO₂Cl₂ (7.84 мл, 97.0 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉-*cyclo*-**S**(**CH**₂)₄**O**] (0.72 г, 92.9 ммоль). Выход 86%.

Данные элементного анализа для C20H44B10Cl9NOS - Вычислено (%): C 31.04; H 5.73; N 1.81; S 4.14; Найдено (%): C 30.76; H 5.69; N 1.79; S 4.09. ¹¹В ЯМР (CD₃CN, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, B3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₃CN, м.д.): 4.24 (m, 2H, SC<u>H_a</u>H_b), 4.00 (m, 2H, SCH_a<u>H_b</u>), 3.75 (m, 4H, SCH₂C<u>H</u>₂), 3.08 (m, 8H, (Bu₄N⁺), 1.60 (m, 8H, (Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 64.2 (SCH₂<u>C</u>H₂), 59.4 (Bu₄N⁺), 39.4 (S<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2937, 2875, 1470, 1412, 1388, 1314, 1277, 1240, 1190, 1157, 1100, 1030, 1001, 930, 881, 847, 740, 675, 525 см⁻¹.

 $(Bu_4N)_2[2-B_{10}Cl_9-cyclo-S(CH_2)_4S-2-B_{10}Cl_9]$ (34)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉-*cyclo*-**S**(**CH**₂)₄**S**-**2**-**B**₁₀**Cl**₉] (0.5 г, 0.59 ммоль) и SO₂Cl₂ (8.66 мл, 107.2 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉-*cyclo*-**S**(**CH**₂)₄**S**-**2**-**B**₁₀**Cl**₉] (0.73 г, 50.1 ммоль). Выход 85%.

Данные элементного анализа для C36H80B20Cl18N2S2 - Вычислено (%): C 29.62; H 5.52; N 1.92; S 4.39; Найдено (%): C 29.43; H 5.50; N 1.87; S 4.28. ¹¹В ЯМР (CD₃CN, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, В3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₃CN, м.д.): 4.09 (d, 4H, SC<u>H</u>_aH_b), 3.74 (d, 4H, SCH_a<u>H</u>_b), 3.08 (m, 16H, (Bu₄N⁺), 1.60 (m, 16H, (Bu₄N⁺), 1.34 (m, 16H, Bu₄N⁺), 0.97 (t, 24H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu₄N⁺), 32.7 (S<u>C</u>), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2966, 2935, 2877, 1465, 1420, 1380, 1309, 1237, 1187, 1150, 1027, 997, 880, 841, 737, 671, 524 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(CH_2N(CO)_2C_6H_4)_2]$ (35)

Получали по аналогичной методике для соединения 23. Из (Bu₄N)[2-B₁₀H₉S(CH₂N(CO)₂C₆H₄)₂] (0.5 г, 0.70 ммоль) и SO₂Cl₂ (5.11 мл, 63.2 ммоль) получено (Bu₄N)[2-B₁₀Cl₉S(CH₂N(CO)₂C₆H₄)₂] (0.62 г, 0.61 ммоль). Выход 87%.

Данные элементного анализа для C34H48B10Cl9N3O4S - Вычислено (%): C 39.96; H 4.73; N 4.11; S 3.14; Найдено (%): C 39.72; H 4.69; N 4.06; S 3.06. ¹¹В ЯМР (CD₃CN, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, В3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₃CN, м.д.): 7.79 (m, 8H, Ph), 5.26 (d, 2H, J=12.29, SC<u>H</u>_aH_b), 5.17 (d, 2H, J=12.29, SCH_a<u>H</u>_b), 3.08 (m, 8H, *n*-Bu₄N⁺), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.36 (m, 8H, *n*-Bu₄N⁺), 0.96 (t, 12H, *n*-Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 167.6 (<u>C</u>O), 135.8, 132.6, 124.4 (Ph), 59.3 (*n*-Bu₄N⁺), 55.8 (S<u>C</u>H₂), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺). ИК (CCl₄): 3368, 3318, 3241, 3175, 2955, 2912, 2851, 1762, 1729, 1610, 1542, 1465, 1419, 1372, 1185, 1159, 1105, 1083, 1002, 933, 845, 786, 761, 719, 690, 671, 650, 620, 583, 520 см⁻¹

$(Bu_4N)[2-B_{10}Cl_9S(CH_2CH_2N(CO)_2C_6H_4)_2]$ (36)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.5 г, 0.67 ммоль) и SO₂Cl₂ (4.91 мл, 60.9 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉**S**(**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.59 г, 0.56 ммоль). Выход 84%.

Данные элементного анализа для C36H52B10Cl9N3O4S - Вычислено (%): C 41.17; H 4.99; N 4.00; S 3.05; Найдено (%): C 40.97; H 4.95; N 3.90; S 2.98. ¹¹В ЯМР (CD₃CN, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, В3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₃CN, м.д.): 7.79 (m, 8H, Ph), 4.17, 4.08 (m, 4H, SCH₂C<u>H₂</u>), 3.45, 3.22 (m, 4H, SC<u>H_aH_b</u>), 3.08 (m, 8H, *n*-Bu₄N⁺), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.96 (t, 12H, *n*-Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 169.2 (<u>C</u>O), 135.2, 133.2, 123.9 (Ph), 59.4 (*n*-Bu₄N⁺), 44.7 (C1), 32.2 (C2), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 13.8 (*n*-Bu₄N⁺). ИК (CCl₄): 3371, 3315, 3239, 3181, 2956, 2912, 2852, 1764, 1730, 1613, 1540, 1467, 1420, 1374, 1186, 1151, 1103, 1080, 1004, 929, 840, 787, 761, 720, 692, 670, 649, 619, 585, 522 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(CH_2CH_2CH_2N(CO)_2C_6H_4)_2]$ (37)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.5 г, 0.65 ммоль) и SO₂Cl₂ (4.73 мл, 58.6 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉**S**(**CH**₂**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.59 г, 0.55 ммоль). Выход 85%.

Данные элементного анализа для C38H56B10Cl9N3O4S - Вычислено (%): C 42.33; H 5.23; N 3.89; S 2.97; Найдено (%): C 41.99; H 5.20; N 3.81; S 2.91. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 7.79 (m, 8H, Ph), 3.72 (t, 4H, CH₂C<u>H₂</u>),3.50 (m, 2H, SC<u>H_aH_b</u>), 3.31 (m, 2H, SCH_a<u>H_b</u>), 3.08 (m, 8H, *n*-Bu₄N⁺), 2.16 (m, 4H, SCH₂C<u>H₂</u>), 1.60 (m, 8H, *n*-Bu₄N⁺), 1.34 (m, 8H, *n*-Bu₄N⁺), 0.96 (t, 12H, *n*-Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 169.2 (<u>C</u>O), 135.2, 133.2, 123.9 (Ph), 59.3 $(n-Bu_4N^+)$, 36.9 (CH_2CH_2, SCH_2) , 27.0 (SCH_2CH_2) , 24.3 $(n-Bu_4N^+)$, 20.3 $(n-Bu_4N^+)$, 13.8 $(n-Bu_4N^+)$. UK (CCl_4) : 3369, 3314, 3238, 3181, 2956, 2910, 2849, 1762, 1732, 1613, 1540, 1467, 1420, 1375, 1185, 1149, 1107, 1078, 999, 927, 842, 786, 761, 721, 693, 670, 621, 586, 521 cm⁻¹.

$(Bu_4N)[2-B_{10}Cl_9S(CH_2COOC_2H_5)_2]$ (38)

Получали по аналогичной методике для соединения **23**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**COOC**₂**H**₅)₂] (0.5 г, 0.88 ммоль) и SO₂Cl₂ (6.4 мл, 79.2 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Cl**₉**S**(**CH**₂**COOC**₂**H**₅)₂] (0.67 г, 0.76 ммоль). Выход 87%.

Данные элементного анализа для C24H50B10Cl9NO4S - Вычислено (%): C 32.91; H 5.75; N 1.59; S 3.66; Найдено (%): C 32.68; H 5.70; N 1.55; S 3.55. ¹¹B ЯМР (CD₃CN, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 4.34 (m, 4H, SC<u>H</u>₂), 4.21 (m, 4H, COOC<u>H</u>₂), 3.08 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 1.26 (t, 6H, C<u>H</u>₃), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 165.4 (<u>COO</u>), 62.8 (O<u>C</u>H₂), 59.3 (*n*-Bu4N⁺), 41.4 (S<u>C</u>H₂), 24.3 (*n*-Bu₄N⁺), 20.3 (*n*-Bu₄N⁺), 14.1 (CH₂<u>C</u>H₃), 13.8 (*n*-Bu₄N⁺). *I*K (CCl₄): 2931, 2875, 1471, 1412, 1391, 1314, 1222, 1245, 1190, 1150, 1099, 1030, 999, 930, 882, 847, 737, 675, 524 см⁻¹.

2.2.5. Синтез хлорированных аммониевых производных

$(Bu_4N)[2-B_{10}Cl_9NH_3]$ (39)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль) помещали в колбу на 25 мл и растворяли в 3 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °С, после чего медленно по каплям приливали 10-и кратный избыток сульфурилхлорида (9.65 мл, 119.46 ммоль) в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 5 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. К полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл петролейного эфира и обрабатывали на ультразвуковой ванне в течение 20 минут. Раствор декантировали и повторяли процедуру еще раз. Полученный осадок отфильтровывали и последовательно промывали 2*10 мл петролейным эфиром, 2*10 мл дистиллированной воды и 2*10 диэтиловым эфиром. Выход 88%. (0.8 г, 1.17 ммоль)

Данные элементного анализа для C16H39B10Cl9N2 - Вычислено (%): C 27.98; H 5.72; N 4.08; Найдено (%): C 27.75; H 5.77; N 4.04. ¹¹B ЯМР (CD₃CN,

м.д.): -2.9 (s, 1B), -4.8 (s, 1B), -11.2 (s, 6B), -15.8 (s, 1B). 1H ЯМР (CD3CN, м.д.): 3.08 (m, 8H, Bu_4N^+), 1.60 (m, 8H, Bu_4N^+), 1.34 (m, 8H, Bu_4N^+), 0.97 (t, 12H, Bu_4N^+). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu_4N^+), 24.3 (Bu_4N^+), 20.3 (Bu_4N^+), 13.8 (Bu_4N^+). ИК (CCl₄):2961, 2922, 2870, 2851, 1470, 1421, 1371, 1360, 1307, 1245, 1179, 1150, 1107, 1001, 921, 899, 878, 842, 785, 762, 525 см⁻¹.

$(Bu_4N)[1-B_{10}Cl_9N(n-Pr)_3]$ (40)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**N**(*n*-**Pr**)₃] (0.5 г, 0.99 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °C, после чего медленно по каплям приливали 10-и кратный избыток сульфурилхлорида (7.2 мл, 89.1 ммоль) в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 5 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. Полученный твердый остаток заново растворяли в 3 мл ацетонитрила и приливали свежий 5-и кратный избыток сульфурилхлорида (3.6 мл, 44.55 ммоль) и облучали УФ при температуре 50 °С в течение 2 суток при постоянном перемешивании в атмосфере сухого аргона. После чего, реакционную смесь снова упаривали на масляном насосе до полного удаления летучих продуктов реакции, а к полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл дихлорметана и обрабатывали на ультразвуковой ванне в течение 10 минут. Затем органическую фазу отделяли на центрифуге и упаривали на роторном Окончательную очистку проводили испарителе. С помощью флэшхроматографии (SiO₂). Выход 84%.

Данные элементного анализа для C25H57B10Cl9N2 - Вычислено (%): C 36.94; H 7.07; N 3.45; Найдено (%): C 36.76; H 7.00; N 3.39. ¹¹B ЯМР (CD₃CN, м.д.): м.д. 4.4 (s, 1B), - 9.2 (s, 4B), -10.5 (s, 5B). ¹H ЯМР (CD₃CN, м.д.): 3.71 (m, 6H, NCH₂), 3.08 (m, 8H, Bu₄N⁺), 1.91 (m, 6H, NCH₂C<u>H₂), 1.60 (m, 8H,</u> Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺), 0.94 (t,9H,CH₂CH₃). ¹³C ЯМР (CD₃CN, м.д.): 61.7 (NCH₂), 59.4 (Bu₄N⁺), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 18.1 (NCH₂CH₂), 13.8 (Bu₄N⁺), 10.9 (CH₂CH₃). ИК (CCl₄): 2962, 2933, 2876, 1473, 1380, 1319, 1285, 1191, 1160, 1012, 958, 831, 771, 738, 626, 535, 516, 487, 467 cm^{-1} .

$(Bu_4N)[1-B_{10}Cl_9N(n-Bu)_3]$ (41)

Получали по аналогичной методике для соединения **40**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**Bu**)₃] (0.5 г, 0.92 ммоль) и SO₂Cl₂ (1 – 6.67 мл, 82.6 ммоль, 2 – 3.33 мл, 41.3 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-**Bu**)₃] (0.64 г, 0.75 ммоль). Выход 82%.

Данные элементного анализа для C28H63B10Cl9N2 - Вычислено (%): C 39.33; H 7.43; N 3.28; Найдено (%): C 39.13; H 7.39; N 3.21. ¹¹В ЯМР (CD₃CN, м.д.): м.д. 4.4 (s, 1B), - 9.2 (s, 4B), -10.5 (s, 5B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.71 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.30 (m, 6H, C<u>H</u>₂CH₃), 0.98 (t, 12H, Bu₄N⁺), 0.94 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 61.7 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 27.1 (NCH₂<u>C</u>H₂), 24.4 (Bu₄N⁺), 21.1 (<u>C</u>H₂CH₃), 20.4 (Bu₄N⁺), 13.9 (Bu₄N⁺), 13.8 (<u>C</u>H₃). ИК (CCl₄): 2961, 2934, 2875, 1470, 1381, 1317, 1284, 1191, 1161, 1009, 957, 832, 772, 739, 621, 535, 518, 487, 471 cm⁻¹.

$(Bu_4N)[1-B_{10}Cl_9N(n-C_8H_{17})_3]$ (42)

Получали по аналогичной методике для соединения **40**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-C₈**H**₁₇)₃] (0.5 г, 0.7 ммоль) и SO₂Cl₂ (1 – 5.1 мл, 63.1 ммоль, 2 – 2.55 мл, 31.55 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-C₈**H**₁₇)₃] (0.6 г, 0.59 ммоль). Выход 84%.

Данные элементного анализа для C40H87B10Cl9N2 - Вычислено (%): C 46.95; H 8.57; N 2.74; Найдено (%): C 46.71; H 8.61; N 2.59. ¹¹B-ЯМР (CD₃CN, м.д.): м.д. 4.4 (s, 1B), - 9.2 (s, 4B), -10.5 (s, 5B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.71 (m, 6H, NC<u>H₂</u>), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H₂</u>, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 30H, C3<u>H₂-C7H₂</u>), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H₃</u>). ¹³С ЯМР (CD₃CN, м.д.): 61.7 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>7H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2961, 2931, 2875, 1470, 1381, 1317, 1284, 1195, 1157, 1009, 957, 837, 772, 741, 625, 534, 515, 487, 468 см⁻¹.

$(Bu_4N)[1-B_{10}Cl_9N(n-C_{12}H_{25})_3]$ (43)

Получали по аналогичной методике для соединения **40**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (0.5 г, 0.57 ммоль) и SO₂Cl₂ (1 – 4.15 мл, 51.3 ммоль, 2 – 2.07 мл, 25.6 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (0.56 г, 0.47 ммоль). Выход 83%.

Данные элементного анализа для C52H111B10Cl9N2 - Вычислено (%): C 52.41; H 9.39; N 2.35; Найдено (%): C 52.22; H 9.34; N 2.30. ¹¹B-ЯМР (CD₃CN, м.д.): м.д. 4.4 (s, 1B), - 9.2 (s, 4B), -10.5 (s, 5B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.71 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 48H, C3<u>H</u>₂-C11<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 61.7 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>11H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 261, 2937, 2881, 1471, 1376, 1621, 1284, 1195, 1161, 1016, 957, 831, 770, 735, 625, 534, 514, 483, 469 cm⁻¹.

$(Bu_4N)[1-B_{10}Cl_9N(n-C_{18}H_{37})_3]$ (44)

Получали по аналогичной методике для соединения **40**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-C₁₈**H**₃₇)₃] (0.5 г, 0.44 ммоль) и SO₂Cl₂ (1 – 3.2 мл, 39.7 ммоль, 2 – 1.6 мл, 19.9 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-C₁₈**H**₃₇)₃] (0.53 г, 0.37 ммоль). Выход 84%.

Данные элементного анализа для C70H147B10Cl9N2 - Вычислено (%): C 58.22; H 10.26; N 1.94; Найдено (%): C 57.99; H 10.29; N 1.87. ¹¹B-ЯМР (CD₃CN, м.д.): м.д. 4.4 (s, 1B), - 9.2 (s, 4B), -10.5 (s, 5B). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.71 (m, 6H, NC<u>H₂</u>), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H₂</u>, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 84H, C3<u>H₂-C17H₂</u>), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³С ЯМР (CD₃CN, м.д.): 61.7 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C2H₂-C1</u>7H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2967, 2934, 2878, 1469, 1382, 1317, 1280, 1190, 1161, 1010, 958, 830, 775, 741, 621, 531, 517, 486, 468 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9N(n-Pr)_3]$ (45)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**N**(*n*-**Pr**)₃] (0.5 г, 0.99 ммоль) и *N*-Cl-сукцинимид (1.3 г, 9.9 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл диметилформамида и приливали 10 мкл концентрированной соляной кислоты. Полученную реакционную смесь грели при 80 °C в течение 2 суток при постоянном перемешивании в атмосфере сухого аргона. После чего, раствор упаривали на роторном испарителе, а к полученному твердому остатку приливали 20 мл дистиллированной воды и обрабатывали на ультразвуковой ванне в течение 10 минут до образования хлопьеобразного отфильтровывали и 2*10 белого осадка. Осадок промывали ΜЛ дистиллированной воды и 2*10 диэтилового эфира. Полученный порошок растворяли в 3 мл ацетонитрила и приливали свежий 5-и кратный избыток сульфурилхлорида (3.6 мл, 44.55 ммоль) и облучали УФ при температуре 50 °С в течение 2 суток при постоянном перемешивании в атмосфере сухого аргона. После чего, реакционную смесь снова упаривали на масляном насосе до полного удаления летучих продуктов реакции, а к полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл дихлорметана и обрабатывали на ультразвуковой ванне в течение 10 минут. Затем органическую фазу отделяли на центрифуге и упаривали на роторном испарителе. Окончательную очистку проводили С помощью флэшхроматографии (SiO₂). Выход

Данные элементного анализа для C25H57B10Cl9N2 - Вычислено (%): C 36.94; H 7.07; N 3.45; Найдено (%): C 36.71; H 7.03; N 3.36. ¹¹В ЯМР ((CD₃)₂CO, м.д.): 4.7 (1B, B10), 3.4 (1B, B1), -10.5 (8B, B2-9). ¹Н ЯМР ((CD₃)₂CO, м.д.): 3.68 (m, 6H, NC<u>H₂</u>), 3.44 (m, 8H, Bu₄N⁺), 1.85 (m, 14H,

82

NCH₂C<u>H</u>₂, Bu₄N⁺), 14.3 (m, 8H, Bu₄N⁺), 0.98 (t, 12H, Bu₄N⁺), 0.87 (t, 9H, C<u>H</u>₃). ¹³C *ЯМР* (CD₃CN, м.д.): 62.8 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 19.6 (NCH₂C<u>H₂), 13.9 (Bu₄N⁺), 11.3 (C</u>H₃). *ИК* (CCl₄): 2961, 2935, 2879, 1471, 1375, 1318, 1284, 1186, 1157, 1013, 959, 832, 770, 741, 625, 534, 517, 486, 469 cm^{-1} .

$(Bu_4N)[2-B_{10}Cl_9N(n-Bu)_3]$ (46)

Получали по аналогичной методике для соединения **45**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**Bu**)₃] (0.5 г, 0.92 ммоль), NCS (1.23 г, 9.2 ммоль) и SO₂Cl₂ (3.33 мл, 41.3 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-**Bu**)₃] (0.66 г, 0.77 ммоль). Выход 84%.

Данные элементного анализа для C28H63B10Cl9N2 - Вычислено (%): C 39.33; H 7.43; N 3.28; Найдено (%): C 39.02; H 7.37; N 3.22. ¹¹В ЯМР ((CD₃)₂CO, м.д.): 4.7 (1B, B10), 3.4 (1B, B1), -10.5 (8B, B2-9). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.67 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.30 (m, 6H, C<u>H</u>₂CH₃), 0.98 (t, 12H, Bu₄N⁺), 0.94 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 60.9 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 27.1 (NCH₂<u>C</u>H₂), 24.4 (Bu₄N⁺), 21.1 (<u>C</u>H₂CH₃), 20.4 (Bu₄N⁺), 13.9 (Bu₄N⁺), 13.8 (<u>C</u>H₃). ИК (CCl₄): 2969, 2940, 2879, 1470, 1379, 1324, 1281, 1190, 1164, 1016, 957, 830, 769, 741, 628, 537, 516, 489, 467 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9N(n-C_8H_{17})_3]$ (47)

Получали по аналогичной методике для соединения **45**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-C₈**H**₁₇)₃] (0.5 г, 0.7 ммоль), NCS (0.93 г, 7 ммоль) и SO₂Cl₂ (2.55 мл, 31.55 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-C₈**H**₁₇)₃] (0.6 г, 0.59 ммоль). Выход 84%.

Данные элементного анализа для C40H87B10Cl9N2 - Вычислено (%): C 46.95; H 8.57; N 2.74; Найдено (%): C 46.71; H 8.50; N 2.69. ¹¹В ЯМР ((CD₃)₂CO, м.д.): 4.7 (1B, B10), 3.4 (1B, B1), -10.5 (8B, B2-9).¹Н ЯМР ((CD₃)₂CO, м.д.): 3.68 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H,

83

NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 30H, C3<u>H</u>₂-C7<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 60.9 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>7H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). IK (CCl₄): 2961, 2934, 2875, 1469, 1379, 1315, 1284, 1187, 1152, 1016, 957, 836, 778, 624, 534, 520, 489, 470 cm⁻¹.

$(Bu_4N)[2-B_{10}Cl_9N(n-C_{12}H_{25})_3]$ (48)

Получали по аналогичной методике для соединения **45**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (0.5 г, 0.57 ммоль), NCS (0.76 г, 5.7 ммоль) и SO₂Cl₂ (2.07 мл, 25.6 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (0.57 г, 0.48 ммоль). Выход 85%.

Данные элементного анализа для C52H111B10Cl9N2 - Вычислено (%): C 52.41; H 9.39; N 2.35; Найдено (%): C 52.16; H 9.28; N 2.41. ¹¹В ЯМР ((CD₃)₂CO, м.д.): 4.7 (1B, B10), 3.4 (1B, B1), -10.5 (8B, B2-9).¹H ЯМР ((CD₃)₂CO, м.д.): 3.68 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 48H, C3<u>H</u>₂-C11<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 60.9 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>11H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2971, 2934, 2881, 1470, 1376, 1324, 1281, 1192, 1160, 1013, 958, 831, 884, 739, 624, 535, 517, 491, 466 см⁻¹.

$(Bu_4N)[2-B_{10}Cl_9N(n-C_{18}H_{37})_3]$ (49)

Получали по аналогичной методике для соединения **45**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₁₈**H**₃₇)₃] (0.5 г, 0.44 ммоль), NCS (0.59 г, 4.4 ммоль) и SO₂Cl₂ (1.6 мл, 19.9 ммоль) получено (**Bu**₄**N**)[**1**-**B**₁₀**Cl**₉**N**(*n*-**C**₁₈**H**₃₇)₃] (0.51 г, 0.36 ммоль). Выход 82%.

Данные элементного анализа для C70H147B10Cl9N2 - Вычислено (%):C 58.22; H 10.26; N 1.94; Найдено (%): C 57.99; H 10.21; N 1.84. ¹¹В ЯМР ((CD₃)₂CO, м.д.): 4.7 (1B, B10), 3.4 (1B, B1), -10.5 (8B, B2-9). ¹Н ЯМР ((CD₃)₂CO, м.д.): 3.68 (m, 6H, NC<u>H₂</u>), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H,

NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 84H, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³C *Я*MP (CD₃CN, м.д.): 60.9 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C1</u>7H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). *I*K (CCl₄): 2961, 2937,2875, 1473, 1376, 1314, 1289, 1201, 1164, 1009, 957, 831, 770, 734, 625, 534, 516, 487, 468 cm⁻¹.

2.2.6. Синтез бромированных сульфониевых производных

 $(Bu_4N)[2-B_{10}Br_9SC(NMe_2)_2]$ (50)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**SC**(**NMe**₂)₂] (0.5 г, 1.02 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °C, после чего медленно по каплям приливали 3-х кратный избыток элементарного брома (1.38 мл, 27.54 ммоль) в 2 мл ацетонитрила в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 2 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. К полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл петролейного эфира и обрабатывали на ультразвуковой ванне в течение 20 минут. Раствор декантировали и повторяли процедуру еще раз. Полученный осадок отфильтровывали И последовательно промывали 2*10 ΜЛ петролейным эфиром, 2*10 мл дистиллированной воды и 2*10 диэтиловым эфиром. Выход 87%. (1.07 г, 0.89 ммоль)

Данные элементного анализа для C21H48B10Br9N3S - Вычислено (%): C 20.98; H 4.02; N 3.49; S 2.67; Найдено (%): C 20.85; H 3.98; N 3.41; S 2.58. 11B ЯМР ((CD₃)₂SO, м.д.): -1.9 (1B, B1), -4.8 (1B, B10), -13.7 (8B, B2-9). ¹H ЯМР ((CD₃)₂SO, м.д.): 3.30 (12H, s, NC<u>H₃</u>), 3.16 (m, 8H, Bu₄N⁺), 1.57 (m, 8H, Bu₄N⁺), 1.30 (m, 8H, Bu₄N⁺), 0.94 (t, 12H, Bu₄N⁺).). ¹³C ЯМР ((CD₃)₂SO, м.д.): 172.2 (S<u>C</u>), 57.5 (Bu₄N⁺), 44.7 (N<u>C</u>H₃), 23.1 (Bu₄N⁺), 19.2 (Bu₄N⁺), 13.5 (Bu₄N⁺). ИК (CCl₄): 2971, 2924, 2879, 1460, 1375, 1304, 1260, 1134, 1065, 1009, 970, 884, 761, 430 см⁻¹.

$(Bu_4N)2[2-B_{10}Br_9SH](51)$

Соль (**Bu**₄**N**)[**2-B**₁₀**Br**₉**SC**(**NMe**₂)₂] (0.5 г, 0.42 ммоль) помещали в колбу на 25 мл и растворяли в 10 мл ацетонитрила. К полученному раствору приливали 5 мл концентрированного раствора гидразина N₂H₄*H₂O. После чего реакционную смесь нагревали до 60 °C и оставляли перемешиваться в течение 2 часов в атмосфере сухого аргона. Затем колбу охлаждали до комнатной температуры и приливали 0.27 мл 40% водного раствора гидроксида тетрабутиламмония (0.11 г, 0.42 ммоль). Раствор упаривали на роторном испарителе, а к полученной вязкой массе приливали 10 мл дистиллированной воды и обрабатывали на ультразвуковой ванне в течение 10 минут до образования хлопьеобразного осадка. Полученный осадок отфильтровывали и последовательно промывали 2*10 мл дистиллированной воды и 2*10 диэтиловым эфиром. Выход 91%. (0.51 г, 0.38 ммоль)

Данные элементного анализа для C32H73B10Br9N2S - Вычислено (%): C 28.57; H 5.47; N 2.08; S 2.38; Найдено (%): C 28.39; H 5.38; N 2.09; S 2.30. ¹¹В ЯМР ((CD₃)₂CO, м.д.): -1.1 (2B, B1,10), -11.5 (8B, B2-9). ¹H ЯМР ((CD₃)₂SO, м.д.): 3.16 (m, 8H, Bu₄N⁺), 1.57 (m, 8H, Bu₄N⁺), 1.30 (m, 8H, Bu₄N⁺), 0.94 (t, 12H, Bu₄N⁺), 0.23 (1H, s, S<u>H</u>). ¹³C ЯМР ((CD₃)₂SO, м.д.): 59.3 (Bu₄N⁺), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2964, 2933, 2871, 1467, 1458, 1360, 1276, 1259, 1155, 925, 897, 839, 786, 760, 438 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(i-Pr)_2]$ (52)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**i**-**Pr**)₂] (0.5 г, 1.05 ммоль) и Br₂ (1.42 мл, 28.35 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(**i**-**Pr**)₂] (1.07 г, 0.9 ммоль). Выход 86%.

Данные элементного анализа для C22H50B10Br9NS - Вычислено (%): C 22.24; H 4.24; N 1.18; S 2.70; Найдено (%): C 22.13; H 4.20; N 1.14; S 2.62. ¹¹B ЯМР (DMF-d7, 96.32 MHz) м.д.: -0.5 (s, 1B), -4.9 (s, 1B), -10.6 (s, 1B), -13.2 (s, 6B), -17.0 (s, 1B). ¹H ЯМР (DMF-d7, 300.3 MHz) м.д.: 4.32 (m, 4H, SC<u>H</u>₂), 3.40 (m, 8H, Bu₄N⁺), 1.81 (d, 12H, C<u>H</u>₃), 1.78 (m, 8H, Bu₄N⁺), 1.39 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). 13C ЯМР (DMF-d7, 75.49 MHz) м.д.: 59.3 (Bu₄N⁺), 45.1 (S<u>C</u>H₂), 24.6 (Bu₄N⁺), 23.2 (<u>C</u>H₃), 20.6 (Bu₄N⁺), 14.2 (Bu₄N⁺). ИК (CCl₄): 2961, 2932, 2873, 1469, 1378, 1307, 1240, 1156, 1120, 1066, 969, 896, 880, 797, 760, 432 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(n-Pr)_2]$ (53)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**Pr**)₂] (0.5 г, 1.05 ммоль) и Br₂ (1.42 мл, 28.35 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(*n*-**Pr**)₂] (1.09 г, 0.92 ммоль). Выход 88%.

Данные элементного анализа для C22H50B10Br9NS - Вычислено (%): C 22.24; H 4.24; N 1.18; S 2.70; Найдено (%): C 22.12; H 4.18; N 1.11; S 2.61. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (DMF-d7, м.д.): 3.56 (m, 4H, SC<u>H</u>₂), 3.40 (m, 8H, Bu₄N⁺), 1.94, 1.87 (m, 4H, SCH₂C<u>H</u>₂), 1.77 (m, 8H, Bu₄N⁺), 1.39 (m, 8H, Bu₄N⁺), 1.04 (t, 6H, C<u>H</u>₃), 0.97 (t, 12H, Bu₄N⁺). 13C ЯМР (DMF-d7, м.д.): 59.3 (Bu₄N⁺), 41.0 (S<u>C</u>H₂), 24.6 (Bu₄N⁺), 21.7 (SCH₂<u>C</u>H₂), 20.6 (Bu₄N⁺), 14.2 (Bu₄N⁺), 13.4 (<u>C</u>H₃). ИК (CCl₄): 2961, 2931, 2873, 1470, 1378, 1308, 1242, 1155, 1123, 1067, 970, 880, 795, 759, 433 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(n-Bu)_2]$ (54)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**Bu**)₂] (0.5 г, 0.99 ммоль) и Br₂ (1.34 мл, 26.68 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(*n*-**Bu**)₂] (1.03 г, 0.85 ммоль). Выход 86%.

Данные элементного анализа для C24H54B10Br9NS - Вычислено (%): C 23.70; H 4.47; N 1.15; S 2.64; Hайдено (%): C 23.46; H 4.39; N 1.18; S 2.57. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (DMF-d7, м.д.): 3.58 (m, 4H, SC<u>H</u>₂), 3.39 (m, 8H, Bu₄N⁺), 1.92, 1.86 (m, 4H, SCH₂C<u>H</u>₂), 1.77 (m, 8H, Bu₄N⁺), 1.47 (m, 4H, C<u>H</u>₂CH₃), 1.42 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺), 0.95 (t, 6H, C<u>H</u>₃),. ¹³C ЯМР (DMF-d7, м.д.):59.4 (Bu₄N⁺), 38.9 (S<u>C</u>H₂), 30.6 (SCH₂<u>C</u>H₂), 24.6 (Bu₄N⁺), 22.4 (<u>C</u>H₂CH₃), 20.6 (Bu₄N⁺), 14.2 (Bu₄N⁺), 13.9 (<u>C</u>H₃). ИК (CCl₄): 2959, 2932, 2872, 1470, 1417, 1380, 1340, 1309, 1242, 1229, 1150, 1122, 1032, 969, 896, 882, 795, 760, 435 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(n-C_8H_{17})_2]$ (55)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₈**H**₁₇)₂] (0.5 г, 0.81 ммоль) и Br₂ (1.09 мл, 21.84 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₈**H**₁₇)₂] (0.91 г, 0.69 ммоль). Выход 85%.

Данные элементного анализа для C32H70B10Br9NS - Вычислено (%): C 28.99; H 5.31; N 1.05; S 2.41; Найдено (%): C 28.82; H 5.26; N 1.04; S 2.34. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (DMF-d7, м.д.): 3.59 (m, 4H, SC<u>H</u>₂), 3.39 (m, 8H, Bu₄N⁺), 1.94, 1.87 (m, 4H, SCH₂C<u>H</u>₂), 1.77 (m, 8H, Bu₄N⁺), 1.42 (m, 8H, Bu₄N⁺), 1.28 (m, 10H, C3-C7), 0.98 (t, 12H, Bu₄N⁺), 0.88 (t, 6H, C<u>H</u>₃). ¹³C ЯМР (DMF-d7, м.д.):59.4 (Bu₄N⁺), 39.2 (S<u>C</u>H₂), 32.6 (SCH₂<u>C</u>H₂), 29.8, 29.5,29.1, 28.0 (C3-C6), 24.7 (Bu₄N⁺), 23.5 (<u>C</u>H₂CH₃), 20.6 (Bu₄N⁺), 14.7 (<u>C</u>H₃), 14.2 (Bu₄N⁺). IK (CCl₄): 2958, 2932, 2874, 1470, 1417, 1380, 1362, 1340, 1309, 1242, 1122, 969, 896, 882, 795, 762, 435 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(n-C_{12}H_{25})_2]$ (56)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₂**H**₂₅)₂] (0.5 г, 0.68 ммоль) и Br₂ (0.92 мл, 18.36 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₂**H**₂₅)₂] (0.83 г, 0.58 ммоль). Выход 85%.

Данные элементного анализа для C40H86B10Br9NS - Вычислено (%): C 33.35; H 6.02; N 0.97; S 2.23; Hайдено (%): C 33.13; H 5.98; N 0.92; S 2.17. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (DMF-d7, м.д.): 3.59 (m, 4H, SC<u>H</u>₂), 3.39 (m, 8H, Bu₄N⁺), 1.95, 1.88 (m, 4H, SCH₂C<u>H</u>₂), 1.77 (m, 8H, Bu₄N⁺), 1.39 (m, 8H, Bu₄N⁺), 1.28 (m, 18H, C3-C11), 0.97 (t, 12H, Bu₄N⁺), 0.88 (t, 6H, C<u>H</u>₃). ¹³C ЯМР (DMF-d7, м.д.):59.4 (Bu₄N⁺), 39.3 (S<u>C</u>H₂), 32.8 (SCH₂<u>C</u>H₂), 30.6, 30.4, 30.3, 30.2, 29.6, 29.1, 28.0 (C3-C10), 24.7 (Bu₄N⁺), 23.6 (<u>C</u>H₂CH₃), 20.6 (Bu₄N⁺), 14.8 (<u>C</u>H₃), 14.3 (Bu₄N⁺). ИК (CCl₄): 2962, 2926, 2874, 2854, 1469, 1418, 1379, 1308, 1242, 1150, 1121, 968, 895, 839, 787, 759, 432 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(n-C_{18}H_{37})_2]$ (57)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.56 ммоль) и Br₂ (0.75 мл, 15.02 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.73 г, 0.45 ммоль). Выход 81%.

Данные элементного анализа для C52H110B10Br9NS - Вычислено (%): C 38.82; H 6.89; N 0.87; S 1.99; Найдено (%): C 38.69; H 6.91; N 0.83; S 1.90. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (DMF-d7, м.д.): 3.59 (m, 4H, SC<u>H</u>₂), 3.39 (m, 8H, Bu₄N⁺), 1.95, 1.88 (m, 4H, SCH₂C<u>H</u>₂), 1.77 (m, 8H, Bu₄N⁺), 1.39 (m, 8H, Bu₄N⁺), 1.28 (m, 18H, C3-C11), 0.97 (t, 12H, Bu₄N⁺), 0.88 (t, 6H, C<u>H</u>₃). ¹³C ЯМР (DMF-d7, м.д.):59.4 (Bu₄N⁺), 39.2 (S<u>C</u>H₂), 32.9 (SCH₂<u>C</u>H₂), 30.6, 30.5, 30.3, 30.2, 29.6, 29.0, 28.0 (C3-C16), 24.6 (Bu₄N⁺), 23.6 (<u>C</u>H₂CH₃), 20.6 (Bu₄N⁺), 14.8 (<u>C</u>H₃), 14.2 (Bu₄N⁺). ИК (CCl₄): 2961, 2925, 2874, 2854, 1468, 1406, 1378, 1308, 1243, 1150, 1121, 968, 895, 838, 786, 762, 433 см⁻¹.

 $(Bu_4N)[2-B_{10}Br_9S(CH_2Ph)_2]$ (58)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**Ph**)₂] (0.5 г, 0.87 ммоль) и Br₂ (1.18 мл, 23.5 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(**CH**₂**Ph**)₂] (0.98 г, 0.76 ммоль). Выход 88%.

Данные элементного анализа для C30H50B10Br9NS - Вычислено (%): C 28.06; H 3.92; N 1.09; S 2.49; Найдено (%): C 27.84; H 3.89; N 1.01; S 2.42. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 7.22, 7.08 (m, 12H, Ph), 4.74 (m, 4H, C1<u>H</u>₂), 3.07 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 131.9, 130.8, 130.1, 130.0 (Ph), 59.4 (Bu₄N⁺), 44.2 (C1), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). *V*K (CCl₄): 2961, 2931, 2871, 1470, 1401, 1312, 1141, 971, 894, 838, 781, 435 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9-cyclo-S(CH_2)_4]$ (59)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉-**cyclo-S**(**CH**₂)₄] (0.5 г, 1.12 ммоль) и Br₂ (1.52 мл, 30.24 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉-**cyclo-S**(**CH**₂)₄] (1.13 г, 0.97 ммоль). Выход 87%.

Данные элементного анализа для C20H44B10Br9NS - Вычислено (%): C 20.74; H 3.83; N 1.21; S 2.77; Найдено (%): C 20.61; H 3.72; N 1.17; S 2.71. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H (DMF–d7, м.д.): 3.83 (m, 2H, SC<u>H</u>_aH_b), 3.56 (m, 2H, SCH_a<u>H</u>_b), 3.39 (m, 8H, Bu₄N⁺), 2.42 (m, 2H, SCH₂C<u>H</u>_aH_b), 2.26 (m, 2H, SCH₂CH_a<u>H</u>_b), 1.77 (m, 8H, Bu₄N⁺), 1.39 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C (DMF–d7, м.д.): 59.3 (Bu₄N⁺), 40.7 (S<u>C</u>H₂), 31.4 (SCH₂<u>C</u>H₂), 24.6 (Bu₄N⁺), 20.6 (Bu₄N⁺), 14.2 (Bu₄N⁺). ИК (CCl₄): 2960, 2931, 2871, 1459, 1407, 1313, 1131, 981, 896, 831, 821, 781, 764, 435 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9-cyclo-S(CH_2)_4O]$ (60)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉-**cyclo-S**(**CH**₂)₄**O**] (0.5 г, 1.08 ммоль) и **B**r₂ (1.46 мл, 29.1 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**B**r₉-**cyclo-S**(**CH**₂)₄**O**] (1.09 г, 0.93 ммоль). Выход 86%. Данные элементного анализа для C20H44B10Br9NOS - Вычислено (%): C 20.46; H 3.78; N 1.19; S 2.73; Hайдено (%): C 20.37; H 3.75; N 1.16; S 2.70. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H (DMF–d7, м.д.): 4.44 (m, 2H, SC<u>H</u>_aH_b), 3.95 (m, 4H, SCH₂C<u>H</u>₂), 3.39 (m, 8H, Bu₄N⁺), 3.14 (m, 2H, SCH_a<u>H</u>_b), 1.77 (m, 8H, Bu₄N⁺), 1.39 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C (DMF–d7, м.д.): 66.1 (SCH₂<u>C</u>H₂), 59.3 (Bu₄N⁺), 32.4 (SCH₂<u>C</u>H₂), 24.6 (Bu₄N⁺), 20.6 (Bu₄N⁺), 14.2 (Bu₄N⁺). IK (CCl₄): 2959, 2932, 2872, 1470, 1417, 1380, 1340, 1309, 1242, 1229, 1150, 1122, 1032, 969, 896, 882, 795, 760, 435 cm⁻¹.

$(Bu_4N)_2[2-B_{10}Br_9-cyclo-S(CH_2)_4S-2-B_{10}Br_9]$ (61)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)₂[**2**-**B**₁₀**H**₉-**cyclo-S**(**CH**₂)₄**S**-**2**-**B**₁₀**H**₉] (0.5 г, 0.59 ммоль) и Br₂ (1.61 мл, 32.16 ммоль) получено (**Bu**₄**N**)₂[**2**-**B**₁₀**Br**₉-**cyclo-S**(**CH**₂)₄**S**-**2**-**B**₁₀**Br**₉] (1.17 г, 0.52 ммоль). Выход 88%.

Данные элементного анализа для C36H80B20Br18N2S2 - Вычислено (%): C 19.13; H 3.57; N 1.24; S 2.84; Найдено (%): C 19.03; H 3.54; N 1.21; S 2.76. ¹¹B ЯМР (DMF-d7, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₃CN, м.д.): 4.12 (d, 4H, SC<u>H</u>_aH_b), 3.86 (d, 4H, SCH_a<u>H</u>_b), 3.08 (m, 16H, (Bu₄N⁺), 1.60 (m, 16H, (Bu₄N⁺), 1.34 (m, 16H, Bu₄N⁺), 0.97 (t, 24H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu₄N⁺), 32.7 (S<u>C</u>), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2961, 2931, 2873, 1470, 1378, 1308, 1242, 1155, 1123, 1067, 970, 880, 795, 759, 433 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(CH_2N(CO)_2C_6H_4)_2]$ (62)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.5 г, 0.7 ммоль) и Br₂ (0.95 мл, 18.96 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.84 г, 0.59 ммоль). Выход 84%.

Данные элементного анализа для C34H48B10Br9N3O4S - Вычислено (%): C 28.72; H 3.40; N 2.95; S 2.25; Найдено (%): C 28.59; H 3.42; N 2.89; S 2.18. ¹¹B ЯМР (DMSO-d6, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (DMSO-d6, м.д.): 7.80 (m, 8H, Ph), 5.21 (s, 4H, SCH2), 3.10 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (m, 8H, Bu₄N⁺). ¹³C ЯМР (DMSO-d6, м.д.): 167.6 (CO), 135.8, 132.6, 124.4 (Ph), 59.3 (Bu₄N⁺), 57.6 (SCH2), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). *I*K (CCl₄): 3374, 3309, 3241, 3179, 2950, 2908, 2845, 1764, 1734, 1615, 1541, 1460, 1421, 1369, 1180, 1153, 1110, 1071, 1010, 830, 841, 784, 760, 724, 624, 665, 650,580, 524 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(CH_2CH_2N(CO)_2C_6H_4)_2]$ (63)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.5 г, 0.67 ммоль) и Br₂ (0.9 мл, 18.09 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.82 г, 0.57 ммоль). Выход 85%.

Данные элементного анализа для C36H52B10Br9N3O4S - Вычислено (%): C 29.82; H 3.61; N 2.89; S 2.21; Найдено (%): C 29.68; H 3.58; N 2.80; S 2.12. ¹¹B ЯМР (DMSO-d6, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). 1H ЯМР (DMSO-d6, м.д.): 7.80 (m, 8H, Ph), 4.13 (t, 4H, CH2N), 3,96 (t, 2H, SCHaHb), 3.80 (t, 2H, SCHaHb), 3.10 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (m, 8H, Bu₄N⁺). ¹³C ЯМР (DMSO-d6, м.д.): 167.6 (CO), 135.8, 132.6, 124.4 (Ph), 59.3 (Bu₄N⁺), 40.5 (SCH2), 35.4 (CH2N), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). IK (CCl₄): 3367, 3304, 3245, 3182, 2945, 2907, 2845, 1760, 1732, 1621, 1545, 1460, 1419, 1370, 1185, 1147, 1104, 1068, 1003, 834, 780, 761, 730, 624, 648,579, 526 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(CH_2CH_2CH_2N(CO)_2C_6H_4)_2]$ (64)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.5 г, 0.65 ммоль) и Br₂ (0.88 мл, 17.57 ммоль) получено (**Bu**₄**N**)[**2-B**₁₀**Br**₉**S**(**CH**₂**CH**₂**CH**₂**N**(**CO**)₂**C**₆**H**₄)₂] (0.84 г, 0.56 ммоль). Выход 87%.

Данные элементного анализа для C38H56B10Br9N3O4S - Вычислено (%): C 30.88; H 3.82; N 2.84; S 2.17; Найдено (%): C 30.73; H 3.80; N 2.81; S 2.14. ¹¹B ЯМР (DMSO-d6, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), - 13.1 (6B, B3, 5-9), -16.7 (1B, B2). 1H ЯМР (DMSO-d6, м.д.): 7.80 (m, 8H, Ph), 3.70 (t, 4H, CH2N), 3.48 (t, 2H, SCHaHb), 3.28 (t, 2H, SCHaHb), 3.10 (m, 8H, Bu₄N⁺), 2.22 (m, 4H, SCH2CH2), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (m, 8H, Bu₄N⁺). 13C ЯМР (DMSO-d6, м.д.): 167.6 (CO), 135.8, 132.6, 124.4 (Ph), 59.3 (Bu₄N⁺), 39.0 (SCH2), 36.6 (CH2N), 26.8 (SCH2CH2), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 3360, 3315, 3240, 3183, 2951, 2903, 2846, 1761, 1728, 1629, 1547, 1458, 1423, 1370, 1181, 1150, 1107, 1068, 1006, 830, 780, 758, 734, 621, 647, 571, 531 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9S(CH_2COOC_2H_5)_2]$ (65)

Получали по аналогичной методике для соединения **50**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**S**(**CH**₂**COOC**₂**H**₅)₂] (0.5 г, 0.88 ммоль) и Br₂ (1.19 мл, 23.85 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**S**(**CH**₂**COOC**₂**H**₅)₂] (1 г, 0.78 ммоль). Выход 89%.

Данные элементного анализа для C24H50B10Br9NO4S - Вычислено (%): C 22.59; H 3.95; N 1.10; S 2.51; Найдено (%): C 22.40; H 3.93; N 1.07; S 2.48. ¹¹В ЯМР (DMF-d7, м.д.): -0.5 (1В, В1), -4.1 (1В, В10), -10.1 (1В, В4), -13.1 (6В, В3, 5-9), -16.7 (1В, В2). ¹Н ЯМР (CD₃CN, м.д.): 4.37 (m, 4H, SC<u>H</u>₂), 4.21 (m, 4H, COOC<u>H</u>₂), 3.08 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 1.26 (t, 6H, C<u>H</u>₃), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 165.4 (<u>C</u>OO), 62.8 (O<u>C</u>H₂), 59.3 (Bu₄N⁺), 41.1 (S<u>C</u>H₂), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 14.1 (CH₂<u>C</u>H₃), 13.8 (Bu₄N⁺). ИК (CCl₄): 2961, 2845, 1731, 1627, 1600, 1461, 1420, 1270, 1108, 1067, 964, 751, 621, 531, 434 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9NH_3]$ (66)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**NH**₃] (0.5 г, 1.33 ммоль) помещали в колбу на 25 мл и растворяли в 3 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °С, после чего медленно по каплям приливали 3-х кратный избыток элементарного брома (1.8 мл, 35.91 ммоль) в 2 мл ацетонитрила в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 2 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. К полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл петролейного эфира и обрабатывали на ультразвуковой ванне в течение 20 минут. Раствор декантировывали и повторяли процедуру еще раз. Полученный осадок отфильтровывали и последовательно промывали 2*10 мл петролейным эфиром, 2*10 мл дистиллированной воды и 2*10 диэтиловым эфиром. Выход 88%. (1.27 г, 1.17 ммоль)

Данные элементного анализа для C16H39B10Br9N2 - Вычислено (%): C 19.68; H 3.62; N 2.58; Найдено (%): C 19.55; H 3.52; N 2.52. ¹¹B ЯМР (CD₃CN, м.д.): -3.1 (s, 1B), -5.2 (s, 1B), -11.1 (s, 6B), -15.4 (s, 1B). ¹H ЯМР (CD₃CN, м.д.): 3.08 (m, 8H, Bu₄N⁺), 1.60 (m, 8H, Bu₄N⁺), 1.34 (m, 8H, Bu₄N⁺), 0.97 (t, 12H, Bu₄N⁺). ¹³C ЯМР (CD₃CN, м.д.): 59.3 (Bu₄N⁺), 24.3 (Bu₄N⁺), 20.3 (Bu₄N⁺), 13.8 (Bu₄N⁺). ИК (CCl₄): 2957, 2924, 2870, 1470, 1434, 1309, 1127, 1026, 981, 880, 651, 435 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9N(n-Pr)_3]$ (67)

Соль (**Bu**₄**N**)[**2-B**₁₀**H**₉**N**(*n*-**Pr**)₃] (0.5 г, 0.99 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °С, после чего медленно по каплям приливали 3-х кратный избыток элементарного брома (1.34 мл, 26.73 ммоль) в 2 мл ацетонитрила в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 2 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. К полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл дихлорметана и обрабатывали на ультразвуковой ванне в течение 10 минут, после чего систему разделяли на центрифуге, а органическую фазу промывали дистиллированной водой еще 2 раза. Затем органическую фазу упаривали на роторном испарителе. Окончательную очистку проводили с помощью флэшхроматографии (SiO₂). Выход 86%. (1.03 г, 0.85 ммоль)

Данные элементного анализа для C25H57B10Br9N2 - Вычислено (%): C 24.75; H 4.74; N 2.31; Найдено (%): C 24.62; H 4.75; N 2.26. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 3.3 (2B, B1, 10), -5.1 (2B, B3, 5), -9.4 (4B, B2, 4, 7, 8), -13.8 (2B, B6, 9). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.72 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.85 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 14.3 (m, 8H, Bu₄N⁺), 0.98 (t, 12H, Bu₄N⁺), 0.87 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 62.6 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 19.6 (NCH₂C<u>H</u>₂), 13.9 (Bu₄N⁺), 11.3 (<u>C</u>H₃). ИК (CCl₄): 2953, 2931, 2874, 1470, 1467, 1424, 1380, 1313, 1257, 1171, 1137, 1118, 1030, 987, 965, 899, 881, 840, 660, 647, 453, 437, 423 см⁻¹.

$(Bu_4N)[2-B_{10}Br_9N(n-Bu)_3]$ (68)

Получали по аналогичной методике для соединения **67**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**Bu**)₃] (0.5 г, 0.92 ммоль) и Br₂ (1.24 мл, 24.77 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**N**(*n*-**Bu**)₃] (0.98 г, 0.78 ммоль). Выход 85%. Данные элементного анализа для C28H63B10Br9N2 - Вычислено (%): C 26.79; H 5.06; N 2.23; Найдено (%): C 26.57; H 4.99; N 2.18. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 3.3 (2B, B1, 10), -5.1 (2B, B3, 5), -9.4 (4B, B2, 4, 7, 8), -13.8 (2B, B6, 9). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.79 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.30 (m, 6H, C<u>H</u>₂CH₃), 0.98 (t, 12H, Bu₄N⁺), 0.94 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 60.8 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 27.1 (NCH₂<u>C</u>H₂), 24.4 (Bu₄N⁺), 21.1 (<u>C</u>H₂CH₃), 20.4 (Bu₄N⁺), 13.9 (Bu₄N⁺), 13.8 (<u>C</u>H₃). ИК (CCl₄): 2951, 2933, 2874, 1471, 1462, 1421, 1397, 1320, 1251, 1173, 1131, 1118, 1031, 985, 961, 898, 881, 841, 660, 647, 449, 436, 422 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9N(n-C_8H_{17})_3]$ (69)

Получали по аналогичной методике для соединения **67**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₈**H**₁₇)₃] (0.5 г, 0.7 ммоль) и Br₂ (0.95 мл, 18.92 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**N**(*n*-**C**₈**H**₁₇)₃] (0.82 г, 0.57 ммоль). Выход 82%.

Данные элементного анализа для C40H87B10Br9N2 - Вычислено (%): C 33.75; H 6.16; N 1.97; Найдено (%): C 33.46; H 6.08; N 1.89. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 3.3 (2B, B1, 10), -5.1 (2B, B3, 5), -9.4 (4B, B2, 4, 7, 8), -13.8 (2B, B6, 9). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.79 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 30H, C3<u>H</u>₂-C7<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 60.8 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>7H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2957, 2934, 2869, 1468, 1460, 1427, 1382, 1315, 1253, 1178, 1131, 1119, 1028, 986, 971, 902, 879, 841, 658, 651, 455, 441, 424 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9N(n-C_{12}H_{25})_3]$ (70)

Получали по аналогичной методике для соединения **67**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (0.5 г, 0.57 ммоль) и Br₂ (0.77 мл, 15.31 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**N**(*n*-**C**₁₂**H**₂₅)₃] (0.76 г, 0.48 ммоль). Выход 84%. Данные элементного анализа для C52H111B10Br9N2 - Вычислено (%): C 39.24; H 7.03; N 1.76; Найдено (%): C 38.89; H 6.91; N 1.67. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 3.3 (2B, B1, 10), -5.1 (2B, B3, 5), -9.4 (4B, B2, 4, 7, 8), -13.8 (2B, B6, 9). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.79 (m, 6H, NC<u>H₂</u>), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 48H, C3<u>H₂-</u> C11<u>H₂</u>), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H₃</u>). ¹³C ЯМР (CD₃CN, м.д.): 60.8 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C</u>11H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2959, 2931, 2873, 1471, 1462, 1421, 1377, 1309, 1255, 1171, 1138, 1115, 1035, 988, 961, 902, 882, 839, 660, 644, 449, 436, 421 cm⁻¹.

$(Bu_4N)[2-B_{10}Br_9N(n-C_{18}H_{37})_3]$ (71)

Получали по аналогичной методике для соединения **67**. Из (**Bu**₄**N**)[**2**-**B**₁₀**H**₉**N**(*n*-**C**₁₈**H**₃₇)₃] (0.5 г, 0.44 ммоль) и Br₂ (0.59 мл, 11.9 ммоль) получено (**Bu**₄**N**)[**2**-**B**₁₀**Br**₉**N**(*n*-**C**₁₈**H**₃₇)₃] (0.66 г, 0.36 ммоль). Выход 81%.

Данные элементного анализа для C70H147B10Br9N2 - Вычислено (%): C 45.59; H 8.03; N 1.52; Hайдено (%): C 45.34; H 7.96; N 1.47. ¹¹B ЯМР ((CD₃)₂CO, м.д.): 3.3 (2B, B1, 10), -5.1 (2B, B3, 5), -9.4 (4B, B2, 4, 7, 8), -13.8 (2B, B6, 9). ¹H ЯМР ((CD₃)₂CO, м.д.): 3.79 (m, 6H, NC<u>H</u>₂), 3.44 (m, 8H, Bu₄N⁺), 1.83 (m, 14H, NCH₂C<u>H</u>₂, Bu₄N⁺), 1.43 (m, 8H, Bu₄N⁺), 1.27 (m, 84H, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 12H, Bu₄N⁺), 0.91 (t, 9H, C<u>H</u>₃). ¹³C ЯМР (CD₃CN, м.д.): 60.8 (N<u>C</u>H₂), 59.4 (Bu₄N⁺), 32.5-24.0 (<u>C</u>2H₂-<u>C1</u>7H₂), 24.4 (Bu₄N⁺), 20.4 (Bu₄N⁺), 14.3 (<u>C</u>H₃), 13.9 (Bu₄N⁺). ИК (CCl₄): 2959, 2931, 2873, 1470, 1461, 1424, 1389, 1313, 1257, 1169, 1140, 1119, 1032, 982, 965, 899, 879, 842, 739, 660, 648, 454, 436, 423 см⁻¹.

2.2.8. Синтез исходных соединений для ионных жидкостей *Cs*₂[2-*B*₁₀*H*₉*SH*] (72)

Соль $(Bu_4N)_2[2-B_{10}H_9SH]$ (1 г, 1.57 ммоль) растворяли в 10 мл метанола и по каплям приливали к 5-и кратному избытку раствора CF₃COOCs (0.77 г,

3.14 ммоль) в метаноле (26 мл, p = 0.15 г/л) при постоянном перемешивании. После полного прикапывания раствора соли, полученную суспензию перемешивали в течение 20 минут, после чего давали отстояться 10 минут, а полученный белый осадок отфильтровывали и промывали 2*10 метанола и 2*10 диэтилового эфира. Выход 0.62 г (95%).

¹¹B-¹H ЯМР (CD₃CN, м.д.): 0.8 (d, 2B), -17.3 (s, 1B), -22.9 (d, 4B), -24.4 (d, 2B), -27.0 (d, 1B).

$Cs[2-B_{10}H_9S(n-C_{18}H_{37})_2]$ (73)

Соль $Cs_2[2-B_{10}H_9SH]$ (0.5 г, 1.2 ммоль) и карбонат цезия (0,19 г, 0.6 ммоль) помещали в колбу на 25 мл и приливали 10 мл диметилформамида. К реакционному раствору добавляли 1-бромоктадекан (0.84 г, 2.52 ммоль) и полученную реакционную смесь грели при 80 °C в течение 3 часов при постоянном перемешивании в атмосфере сухого аргона. После чего, растворитель упаривали на роторном испарителе и досушивали на глубоком вакууме до полного удаления остатков диметилформамида. К полученному твердому остатку приливали 10 мл дистиллированной воды и 10 мл петролейного эфира и обрабатывали на ультразвуковой ванне в течение 10 минут. После чего суспензию разделяли на центрифуге, растворители удаляли и повторяли процедуру еще 2 раза. Конечный осадок переносили в колбу в виде суспензии в метаноле и упаривали на роторном испарителе и досушивали на глубоком вакууме. Выход 0.81 г (86%).

¹¹B-¹H ЯМР (DMSO-d6, м.д.): 3.5 (1В, В10), -2.3 (1В, В1), (-15.5 (1В, В2), -24.5 (2В, В3,5), -25.2 (3В, В4, В6,9), -28.2 (2В, В7,8). ¹H ЯМР (DMSO-d6, м.д.): 2.72 (m, 4H, SC<u>H</u>₂), 1.62 (m, 4H, SCH₂C<u>H</u>₂), 1.45 (m, 4H, C3<u>H</u>₂), 1.25 (m, 56H, C4<u>H</u>₂-C17<u>H</u>₂), 0.91 (t, 6H, C<u>H</u>₃), 2.10-0.60 (m, 9H, В₁₀<u>H</u>₉). 13C ЯМР (DMSO-d6, м.д.): 41.7 (S<u>C</u>H₂), 29.7-26.4 (<u>C</u>3-<u>C</u>16), 22.7 (<u>C</u>17H₂), 13.9 (<u>C</u>18H₃). ИК (CCl₄): 2925, 2854, 2487, 1442, 1007, 880 см⁻¹.

2.2.9. Синтез ионных жидкостей на основе [2-В₁₀Н₉S(*n*-C₁₈H₃₇)₂]⁻ (*EMIM*)[2-В₁₀Н₉S(*n*-C₁₈H₃₇)₂] (74)

Соль **Cs[2-B₁₀H₉S(***n***-C₁₈H₃₇)₂]** (0.5 г, 0.63 ммоль) и EMIMBr (0.12 г, 0.63 ммоль) помещали в колбу на 50 мл и добавляли 10 мл дистиллированной воды и 10 мл ацетонитрила и обрабатывали на ультразвуковой ванне до полного растворения. Полученный раствор упаривали на роторном испарителе и досушивали на глубоком ваккуме до полного удаления воды. К полученной однородной смеси приливали 20 ΜЛ дихлорметана и обрабатывали на ультразвуковой ванне в течение 10 минут, после чего осадок отфильтровывали, раствор упаривали на роторном испарителе и полученное вязкое масло досушивали на глубоком вакууме. Выход 0.45 г (94%).

Данные элементного анализа для C42H94B10N2S - Вычислено (%): C 65.74; H 12.35; N 3.65; S 4.18; Найдено (%): C 65.59; H 12.27; N 3.54; S 4.01. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). 1H ЯМР (CD₂Cl₂, м.д.): 8.96 (s, 1H, NC<u>H</u>N), 7.26 (s, 1H, C<u>H</u>), 7.24 (s, 1H, C<u>H</u>), 4.30 (m, 2H, NC<u>H₂</u>), 3.98 (s, 3H, NC<u>H₃</u>), 2.71, 2.63 (m, 4H, SC<u>H₂</u>), 1.66 (m, 4H, SCH₂C<u>H₂</u>), 1.56 (t, 3H, NCH₂C<u>H₃</u>), 1.27 (m, 30H, C3<u>H₂</u>-C17<u>H₂</u>), 0.88 (t, 3H, C<u>H₃</u>), 2.10-0.60 (m, 9H, B₁₀<u>H₉</u>). 13C ЯМР (CD2Cl2, м.д.): 136.5 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.5 (<u>C</u>H), 45.5 (N<u>C</u>H₂), 41.7 (S<u>C</u>H₂), 36.7 (N<u>C</u>H₃), 31.9 (SCH₂<u>C</u>H₂), 29.7-26.4 (C3-C16), 22.7 (<u>C</u>17H₂), 13.9 (<u>C</u>18H₃). ИК (CCl₄): 3145, 3107, 2958, 2930, 2871, 2475, 1710, 1680, 1570, 1462, 1420, 1379, 1342, 1267, 1161, 1101, 951, 834, 789, 721, 631 см⁻¹.

$(BMIM)[2-B_{10}H_9S(n-C_{18}H_{37})_2]$ (75)

Получали по аналогичной методике для соединения **74**. Из Cs[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.63 ммоль) и BMIMBr (0.14 г, 0.63 ммоль) получено (BMIM)[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.52 г, 0.6 ммоль). Выход 95%. Данные элементного анализа для C44H98B10N2S - Вычислено (%): C 66.44; H 12.42; N 3.52; S 4.03; Hайдено (%): C 66.27; H 12.37; N 3.54; S 3.89. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 8.98 (s, 1H, NC<u>H</u>N), 7.23 (s, 1H, C<u>H</u>), 7.22 (s, 1H, C<u>H</u>), 4.25 (m, 2H, NC<u>H₂</u>), 3.98 (s, 3H, NC<u>H₃</u>), 2.70, 2.62 (m, 4H, SC<u>H₂</u>), 1.88 (m, 2H, NCH₂C<u>H₂</u>), 1.65 (m, 4H, SCH₂C<u>H₂</u>), 1.26 (m, 32H, (N)C<u>H₂, C3<u>H₂-C17H₂</u>), 0.98 (t, 3H, *N*-C<u>H₃</u>), 0.88 (t, 3H, S-C<u>H₃</u>), 2.10-0.60 (m, 9H, B₁₀<u>H₉</u>). ¹³C ЯМР (CD2Cl2, м.д.): 136.8 (NCHN), 123.4 (CH), 121.8 (CH), 50.1 (NCH₂), 41.7 (SCH₂), 36.8 (NCH₃), 32.1 (NCH₂C<u>H₂</u>), 31.9 (SCH₂C<u>H₂</u>), 29.7-26.4 (C3-C16), 22.7 (C17H₂), 19.5 ((N)CH₂), 13.9 (C18H₃), 13.3 ((N)CH₃). ИК (CCl₄): 3143, 3110, 2960, 2933, 2873, 2480, 1701, 1683, 1569, 1465, 1419, 1382, 1339, 1267, 1167, 1094, 946, 837, 792, 735, 620 см⁻¹.</u>

$(MOIM)[2-B_{10}H_9S(n-C_{18}H_{37})_2]$ (76)

Получали по аналогичной методике для соединения **74**. Из Cs[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.63 ммоль) и MOIMBr (0.173 г, 0.63 ммоль) получено (BMIM)[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.54 г, 0.58 ммоль). Выход 92%.

Данные элементного анализа для C48H106B10N2S - Вычислено (%): C 67.70; H 12.55; N 3.29; S 3.76; Найдено (%): C 67.57; H 12.48; N 3.20; S 3.58. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 8.98 (s, 1H, NC<u>H</u>N), 7.23 (s, 1H, C<u>H</u>), 7.22 (s, 1H, C<u>H</u>), 4.25 (m, 2H, NC<u>H₂</u>), 3.98 (s, 3H, NC<u>H₃</u>), 2.70, 2.62 (m, 4H, SC<u>H₂</u>), 1.88 (m, 2H, NCH₂C<u>H₂</u>), 1.65 (m, 4H, SCH₂C<u>H₂</u>), 1.26 (m, 32H, (N)C<u>H₂, C3<u>H₂-C17H₂</u>), 0.98 (t, 3H, *N*-C<u>H₃</u>), 0.88 (t, 3H, S-C<u>H₃</u>), 2.10-0.60 (m, 9H, B₁₀<u>H₉</u>). ¹³C ЯМР (CD2Cl2, м.д.): 136.8 (NCHN), 123.4 (CH), 121.8 (CH), 50.1 (NCH₂), 41.7 (SCH₂), 36.8 (NCH₃), 32.1 (NCH₂C<u>H₂</u>), 31.9 (SCH₂C<u>H₂</u>), 29.7-26.4 (C3-C16), 22.7 (C17H₂), 19.5 ((N)CH₂), 13.9 (C18H₃), 13.3 ((N)CH₃). ИК (CCl₄): 3140, 3108, 2958, 2931, 2876, 2475, 1700, 1681, 1571, 1461, 1426, 1384, 1324, 1259, 1167, 1091, 952, 841, 790, 732, 619 см⁻¹.</u>

$(Hexadecylpyridinium)[2-B_{10}H_9S(n-C_{18}H_{37})_2]$ (77)

Получали по аналогичной методике для соединения **74**. Из Cs[**2**-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.63 ммоль) и Hexadecylpyridinium bromide (0.242 г, 0.63 ммоль) получено (**Hexadecylpyridinium**)[**2**-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.59 г, 0.58 ммоль). Выход 90%.

Данные элементного анализа для C57H121B10NS - Вычислено (%): C 71.26; H 12.70; N 1.46; S 3.34; Haйдено (%): C 71.07; H 12.73; N 1.42; S 3.24. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 8.97 (d, 2H, C<u>H</u>(2,6)), 8.48 (d, 1H, CH(4)), 8.08 (m, 2H, CH(3,5), 4.73 (t, 2H, NC<u>H</u>₂), 2.71, 2.63 (m, 4H, SC<u>H</u>₂), 2.03 (m, 2H, NCH₂CH₂), 1.65 (m, 4H, SCH₂C<u>H</u>₂), 1.26 (m, 58H, (N)C3<u>H₂-C15H₂, SC3H₂-C17H₂), 0.88 (t, 6H, *N*-C<u>H</u>₃, S-C<u>H</u>₃), 2.10-0.60 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₂Cl₂, м.д.): 145.8 (CH, 2,6), 145.2 (CH, 4), 129.2 (CH, 3,5), 63.1 (NCH₂), 42.3 (SCH₂), 32.5-26.7 (NC2H₂-C12H₂, SC2H₂-C16H₂), 23.3 (NC13H₂, SC17H₂), 14.4 (NC14H₂, SC18H₂). ИК (CCl₄): 3130, 3047, 3031, 2931, 2951, 2471, 1634, 1510, 1488, 1468, 1347, 1174, 805, 687 cm⁻¹.</u>

$((CH_3)_3(C_{14}H_{29})N)[2-B_{10}H_9S(n-C_{18}H_{37})_2] (78)$

Получали по аналогичной методике для соединения **74**. Из Cs[**2**-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.63 ммоль) и Tetradecyltrimethylammonium bromide (0.212 г, 0.63 ммоль) получено ((CH₃)₃(C₁₄H₂₉)N)[**2**-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.51 г, 0.55 ммоль). Выход 88%.

Данные элементного анализа для C53H121B10NS - Вычислено (%): C 69.74; H 13.36; N 1.53; S 3.51; Найдено (%): C 69.56; H 13.21; N 1.42; S 3.36. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 3.35 (m, 2H, NC<u>H₂</u>), 3.22 (s, 9H, NC<u>H₃</u>), 2.69, 2.62 (m, 4H, SC<u>H₂</u>),1.74 (m, 2H, NCH₂C<u>H₂</u>), 1.65 (m, 4H, SCH₂C<u>H₂</u>), 1.26 (m, 52H, (N)C3<u>H₂-C13<u>H₂</u>, C3<u>H₂-C17<u>H₂</u>), 0.88 (t, 6H, *N*-C<u>H₃</u>, S-C<u>H₃</u>), 2.10-0.60 (m, 9H, B₁₀<u>H₉</u>). ¹³C ЯМР (CD₂Cl₂,</u></u> м.д.): 67.9 (N<u>C</u>H₂), 54.2 (N<u>C</u>H₃), 42.3 (S<u>C</u>H₂), 32.5-23.3 (N<u>C</u>2H₂-<u>C</u>13H₂, S<u>C</u>2H₂-<u>C</u>17H₂), 14.4 (N<u>C</u>14H₂, S<u>C</u>18H₂). ИК (CCl₄): 2962, 2918, 2847, 2470, 1631, 1469, 1411, 1380, 1331, 1267, 1134, 1108, 1049, 1028, 980, 943, 878, 830, 532 cm^{-1} .

$((C_{12}H_{25})_4N)[2-B_{10}H_9S(n-C_{18}H_{37})_2] (79)$

Получали по аналогичной методике для соединения **74**. Из Cs[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.63 ммоль) и Tetradodecylammonium bromide (0.486 г, 0.63 ммоль) получено ((C₁₂H₂₅)₄N)[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.741 г, 0.55 ммоль). Выход 88%.

Данные элементного анализа для C84H183B10NS - Вычислено (%): C 74.87; H 13.69; N 1.04; S 2.38; Найдено (%): C 74.69; H 13.57; N 0.99; S 2.21. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 3.17 (m, 8H, NC<u>H</u>₂), 2.70, 2.61 (m, 4H, SC<u>H</u>₂), 1.62 (m, 12H, NCH₂C<u>H</u>₂, SCH₂C<u>H</u>₂), 1.26 (m, 104H, (N)C3<u>H</u>₂-C11<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.88 (t, 6H, *N*-C<u>H</u>₃, S-C<u>H</u>₃), 2.10-0.60 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₂Cl₂, м.д.): 59.1 (N<u>C</u>H₂), 41.7 (S<u>C</u>H₂), 31.9-22.1 (N<u>C</u>2H₂-<u>C</u>11H₂, S<u>C</u>2H₂-<u>C</u>17H₂), 13.9 (N<u>C</u>12H₂, S<u>C</u>18H₂). ИК (CCl₄): 2963, 2920, 2847, 2488, 1630, 1469, 1420, 1380, 1328, 1267, 1154, 1108, 1066, 1028, 990, 943, 880, 830, 534 см⁻¹.

$((C_6H_{13})_3C_{14}H_{29}P)[2-B_{10}H_9S(n-C_{18}H_{37})_2] (80)$

Получали по аналогичной методике для соединения **74**. Из Cs[**2**-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.63 ммоль) и Trihexyltetradecylphosphonium bromide (0.355 г, 0.63 ммоль) получено ((C₆H₁₃)₃C₁₄H₂₉P)[**2**-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.603 г, 0.53 ммоль). Выход 84%.

Данные элементного анализа для C68H151B10PS - Вычислено (%): C 71.64; H 13.35; S 2.81; Найдено (%): C 71.55; H 13.37; S 2.59. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 2.70, 2.61 (m, 4H, SC<u>H</u>₂), 2.20 (m, 8H, PC<u>H</u>₂), 1.62 (m, 4H, SCH₂C<u>H</u>₂), 1.51 (m, 8H, PCH₂C<u>H</u>₂), 1.26 (m, 70H, (P)C3<u>H</u>₂-C5<u>H</u>₂, (P)C3<u>H</u>₂-C13<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.91 (t, 6H, P-C<u>H</u>₃), 0.88 (t, 4H, P-C<u>H</u>₃, S-C<u>H</u>₃), 2.10-0.60 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₂Cl₂, м.д.): 42.3 (S<u>C</u>H₂), 32.5-19.4 (S<u>C</u>2H₂-<u>C</u>17H₂, P(<u>C</u>₅H₁₀)₃, P(<u>C</u>₁₃H₂₆), 14.4 (P<u>C</u>14H₂, S<u>C</u>18H₂), 14.3 (P<u>C</u>6H₂). ИК (CCl₄): 2977, 2937, 2931, 2530, 2470, 1623, 1455, 1453, 1420, 1390, 1290, 1274, 1261, 1048, 1003, 983, 921, 786, 567.

2.2.10. Синтез ионных жидкостей на основе [2-B₁₀Cl₉S(*n*-C₁₈H₃₇)₂]⁻ (*EMIM*)[2-B₁₀Cl₉S(*n*-C₁₈H₃₇)₂] (81)

Соль (EMIM)[2-B₁₀H₉S(n-C₁₈H₃₇)₂] (0.5 г, 0.65 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °С, после чего медленно по каплям приливали 10-и кратный избыток сульфурилхлорида SO₂Cl₂ (4.73 мл, 58.5 ммоль) в среде сухого аргона при постоянном перемешивании. Затем медленно нагревали реакционный раствор до комнатной температуры и оставляли на 5 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. После чего полученную вязкую массу очищали флэш-хроматографией (SiO₂). Затем к полученной стеклообразной массе приливали 10 мл дистиллированной воды и обрабатывали на ультразвуковой ванне в течение 10 минут с образованием мелкодисперсного белого осадка, который был отфильтрован и высушен на лиофильной сушке. Выход 0.6 г, 0.56 ммоль (86%).

Данные элементного анализа для C84H183B10NS - Вычислено (%): C 46.82; H 7.95; N 2.60; S 2.97; Найдено (%): C 46.69; H 7.81; N 2.49; S 2.81. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 8.96 (s, 1H, NC<u>H</u>N), 7.26 (s, 1H, C<u>H</u>), 7.24 (s, 1H, C<u>H</u>), 4.30 (m, 2H, NC<u>H</u>₂), 3.98 (s, 3H, NC<u>H</u>₃), 3.33 (m, 4H, SC<u>H</u>₂), 1.71 (m, 4H, SCH₂C<u>H</u>₂), 1.56 (t, 3H, NCH₂C<u>H</u>₃), 1.27 (m, 30H, C3<u>H</u>₂-C17<u>H</u>₂), 0.88 (t, 3H, C<u>H</u>₃). ¹³C ЯМР (CD₂Cl₂, м.д.): 136.5 (NCHN), 123.4 (CH), 121.5 (CH), 45.5 (NCH₂), 39.1 (SCH₂), 36.7 (NCH₃), 32.4 (SCH₂CH₂), 29.7-26.4 (C3-C16), 22.7 (<u>C</u>17H₂), 13.9 (<u>C</u>18H₃). ИК (CCl₄): 3140, 3109, 2961, 2931, 2877, 1709, 1675, 1569, 1414, 1420, 1367, 1245, 1161, 1109, 959, 834, 799, 721, 627, 534 см⁻¹.

$(BMIM)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2]$ (82)

Получали по аналогичной методике для соединения **81**. Из (**BMIM**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.63 ммоль) и SO₂Cl₂ (4.57 мл, 56.6 ммоль) получено (**BMIM**)[**2**-**B**₁₀**C**l₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.61 г, 0.55 ммоль). Выход 88%.

Данные элементного анализа для C44H89B10Cl9N2S - Вычислено (%): C 47.81; H 8.11; N 2.53; S 2.90; Найдено (%): C 47.69; H 7.89; N 2.43; S 2.79. ¹¹В ЯМР (CD₂Cl₂, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, B3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₂Cl₂, м.д.): 8.98 (s, 1H, NC<u>H</u>N), 7.23 (s, 1H, C<u>H</u>), 7.22 (s, 1H, C<u>H</u>), 4.25 (m, 2H, NC<u>H</u>₂), 3.98 (s, 3H, NC<u>H</u>₃), 3.33 (m, 4H, SC<u>H</u>₂), 1.88 (m, 2H, NCH₂CH₂), 1.71 (m, 4H, SCH₂C<u>H</u>₂), 1.26 (m, 32H, (N)C<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 3H, N-C<u>H</u>₃), 0.88 (t, 3H, S-C<u>H</u>₃). ¹³C ЯМР (CD2Cl2, м.д.): 136.8 (NCHN), 123.4 (CH), 121.8 (CH), 50.1 (NCH₂), 39.1 (SCH₂), 36.8 (NCH₃), 32.4 (SCH₂CH₂), 32.1 (NCH₂CH₂), 29.7-26.4 (C3-C16), 22.7 (C17H₂), 19.5 ((N)CH₂), 13.9 (C18H₃), 13.3 ((N)CH₃). ИК (CCl₄): 3138, 3107, 2954, 2927, 2874, 1684, 1615, 1561, 1419, 1348, 1239, 1158, 1112, 963, 834, 801, 721, 631, 535 cm⁻¹.

$(MOIM)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2]$ (83)

Получали по аналогичной методике для соединения **81**. Из (**MOIM**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.59 ммоль) и SO₂Cl₂ (4.29 мл, 53.1 ммоль) получено (**MOIM**)[**2**-**B**₁₀**C**l₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.57 г, 0.49 ммоль). Выход 84%.

Данные элементного анализа для C48H97B10Cl9N2S - Вычислено (%): C 49.63; H 8.42; N 2.41; S 2.76; Найдено (%): C 49.51; H 8.26; N 2.39; S 2.61. ¹¹B-¹H ЯМР (CD₂Cl₂, м.д.): 3.5 (1B, B10), -2.3 (1B, B1), (-15.5 (1B, B2), -24.5 (2B, B3,5), -25.2 (3B, B4, B6,9), -28.2 (2B, B7,8). ¹H ЯМР (CD₂Cl₂, м.д.): 8.98 (s, 1H, NC<u>H</u>N), 7.23 (s, 1H, C<u>H</u>), 7.22 (s, 1H, C<u>H</u>), 4.25 (m, 2H, NC<u>H₂</u>), 3.98 (s, 3H, NC<u>H</u>₃), 3.33 (m, 4H, SC<u>H</u>₂), 1.88 (m, 2H, NCH₂<u>C</u>H₂), 1.72 (m, 4H, SCH₂C<u>H</u>₂), 1.26 (m, 32H, (N)C<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 3H, N-C<u>H</u>₃), 0.88 (t, 3H, S-C<u>H</u>₃). ¹³C ЯМР (CD2Cl2, м.д.): 136.8 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.8 (<u>C</u>H), 50.1 (N<u>C</u>H₂), 39.2 (S<u>C</u>H₂), 36.8 (N<u>C</u>H₃), 32.4 (SCH₂<u>C</u>H₂), 32.1 (NCH₂<u>C</u>H₂), 29.7-26.4 (C3-C16), 22.7 (<u>C</u>17H₂), 19.5 ((N)<u>C</u>H₂), 13.9 (<u>C</u>18H₃), 13.3 ((N)<u>C</u>H₃). ИК (CCl₄): 3139, 3104, 2951, 2934, 2871, 1671, 1608, 1553, 1427, 1351, 1277, 1149, 1107, 941, 834, 807, 761, 624, 531 см⁻¹.

$(Hexadecylpyridinium)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2]$ (84)

Получали по аналогичной методике для соединения **81**. Из (**Hexadecylpyridinium**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.52 ммоль) и SO₂Cl₂ (3.78 мл, 46.8 ммоль) получено (**Hexadecylpyridinium**)[**2**-**B**₁₀**Cl**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.56 г, 0.44 ммоль). Выход 85%.

Данные элементного анализа для C57H112B10Cl9NS - Вычислено (%): C 53.87; H 8.88; N 1.10; S 2.52; Hайдено (%): C 53.61; H 8.63; N 1.02; S 2.41. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 8.97 (d, 2H, C<u>H</u>(2,6)), 8.48 (d, 1H, CH(4)), 8.08 (m, 2H, CH(3,5), 4.73 (t, 2H, NC<u>H</u>₂), 3.33 (m, 4H, SC<u>H</u>₂), 2.03 (m, 2H, NCH₂<u>C</u>H₂), 1.72 (m, 4H, SCH₂C<u>H</u>₂), 1.26 (m, 58H, (N)C3<u>H</u>₂-C15<u>H</u>₂, SC3<u>H</u>₂-C17<u>H</u>₂), 0.88 (t, 6H, N-C<u>H</u>₃, S-C<u>H</u>₃). ¹³C ЯМР (CD₂Cl₂, м.д.): 145.8 (<u>C</u>H, 2,6), 145.2 (<u>C</u>H, 4), 129.2 (<u>C</u>H, 3,5), 63.1 (N<u>C</u>H₂), 39.1 (S<u>C</u>H₂), 32.5-26.7 (N<u>C</u>2H₂-<u>C</u>12H₂, S<u>C</u>2H₂-<u>C</u>16H₂), 23.3 (N<u>C</u>13H₂, S<u>C</u>17H₂), 14.4 (N<u>C</u>14H₂, S<u>C</u>18H₂). ИК (CCl₄): 3124, 3061, 3027, 2957, 2934, 1657, 1508, 1491, 1467, 1351, 1171, 799, 685, 529 см⁻¹.

$((CH_3)_3(C_{14}H_{29})N)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2]$ (85)

Получали по аналогичной методике для соединения **81**. Из ((*CH*₃)₃(*C*₁₄*H*₂₉)*N*)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.55 ммоль) и SO₂Cl₂ (3.98 мл, 49.3 ммоль) получено ((*CH*₃)₃(*C*₁₄*H*₂₉)*N*)[**2**-**B**₁₀**C**l₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.67 г, 0.5 ммоль). Выход 87%.

Данные элементного анализа для C53H112B10Cl9NS - Вычислено (%): C 52.06; H 9.23; N 1.15; S 2.62; Найдено (%): C 51.99; H 9.26; N 1.07; S 2.46. ¹¹В ЯМР (CD₂Cl₂, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, B3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₂Cl₂, м.д.): 3.35 (m, 2H, NC<u>H₂</u>), 3.33 (m, 4H, SC<u>H₂</u>), 3.22 (s, 9H, NC<u>H₃</u>), 1.74 (m, 2H, NCH₂C<u>H₂</u>), 1.71 (m, 4H, SCH₂C<u>H₂</u>), 1.26 (m, 52H, (N)C3<u>H₂-C13H₂</u>, C3<u>H₂-C17H₂</u>), 0.88 (t, 6H, N-C<u>H₃</u>, S-C<u>H₃</u>). ¹³C ЯМР (CD₂Cl₂, м.д.): 67.9 (NCH₂), 54.2 (NCH₃), 39.1 (SCH₂), 32.5-23.3 (NC₂H₂-C13H₂, SC₂H₂-C17H₂), 14.4 (NC₁4H₂, SC₁8H₂). *И*K (CCl₄): 2961, 2928, 2871, 2849, 1467, 1404, 1370, 1310, 1239, 1152, 1119, 972, 889, 841, 782, 759, 532 cm⁻¹.

$((C_{12}H_{25})_4N)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2]$ (86)

Получали по аналогичной методике для соединения **81**. Из (($C_{12}H_{25}$)₄N)[**2-B**₁₀H₉S(n-C₁₈H₃₇)₂] (0.5 г, 0.37 ммоль) и SO₂Cl₂ (2.70 мл, 46.8 ммоль) получено (($C_{12}H_{25}$)₄N)[**2-B**₁₀Cl₉S(n-C₁₈H₃₇)₂] (0.50 г, 0.30 ммоль). Выход 82%.

Данные элементного анализа для C84H174B10Cl9NS - Вычислено (%): C 60.87; H 10.58; N 0.84; S 1.93; Найдено (%): C 60.67; H 10.61; N 0.79; S 1.81. ¹¹В ЯМР (CD₂Cl₂, м.д.): -0.7 (1В, В1), -3.4 (1В, В10), -6.1 (1В, В4), -10.3 (6В, B3, 5-9), -17.5 (1В, В2). ¹Н ЯМР (CD₂Cl₂, м.д.): 3.33 (m, 4H, SC<u>H</u>₂), 3.17 (m, 8H, NC<u>H</u>₂), 1.67 (m, 12H, NCH₂C<u>H</u>₂, SCH₂C<u>H</u>₂), 1.26 (m, 104H, (N)C3<u>H</u>₂-C11<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.88 (t, 6H, N-C<u>H</u>₃, S-C<u>H</u>₃), 2.10-0.60 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD₂Cl₂, м.д.): 59.1 (N<u>C</u>H₂), 39.1 (S<u>C</u>H₂), 32.4 (S<u>C</u>2H₂), 31.9-22.1 (N<u>C</u>2H₂-<u>C</u>11H₂, S<u>C</u>3H₂-<u>C</u>17H₂), 13.9 (N<u>C</u>12H₂, S<u>C</u>18H₂). ИК (CCl₄): 2964, 2934, 2855, 1470, 1411, 1376, 1304, 1240, 1149, 1125, 969, 895, 841, 781, 762, 531 см⁻¹.

$((C_6H_{13})_3C_{14}H_{29}P)[2-B_{10}Cl_9S(n-C_{18}H_{37})_2] (87)$

Получали по аналогичной методике для соединения **81**. Из ((*C*₆*H*₁₃)₃*C*₁₄*H*₂₉*P*)[**2**-**B**₁₀**H**₉**S**(*n*-C₁₈**H**₃₇)₂] (0.5 г, 0.44 ммоль) и SO₂Cl₂ (3.2 мл, 46.8 ммоль) получено ((*C₆H₁₃*)₃*C*₁₄*H*₂₉*P*)[**2-B**₁₀Cl₉S(*n*-C₁₈H₃₇)₂] (0.56 г, 0.37 ммоль). Выход 85%.

Данные элементного анализа для C68H142B10Cl9PS - Вычислено (%): C 56.32; H 9.87; S 2.21; Найдено (%): C 56.23; H 9.81; S 2.03. ¹¹В ЯМР (CD₂Cl₂, м.д.): -0.7 (1B, B1), -3.4 (1B, B10), -6.1 (1B, B4), -10.3 (6B, B3, 5-9), -17.5 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 3.33 (m, 4H, SC<u>H</u>₂), 2.20 (m, 8H, PC<u>H</u>₂), 1.71 (m, 4H, SCH₂C<u>H</u>₂), 1.51 (m, 8H, PCH₂C<u>H</u>₂), 1.26 (m, 70H, (P)C3<u>H</u>₂-C5<u>H</u>₂, (P)C3<u>H</u>₂-C13<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.91 (t, 6H, P-C<u>H</u>₃), 0.88 (t, 4H, P-C<u>H</u>₃, S-C<u>H</u>₃). ¹³C ЯМР (CD₂Cl₂, м.д.): 39.1 (S<u>C</u>H₂), 32.5-19.4 (S<u>C</u>2H₂-<u>C</u>17H₂, P(<u>C</u>₅H₁₀)₃, P(<u>C</u>₁₃H₂₆), 14.4 (P<u>C</u>14H₂, S<u>C</u>18H₂), 14.3 (P<u>C</u>6H₂). ИК (CCl₄): 2977, 2937, 2931, 1472, 1453, 1408, 1305, 1287, 1279, 1234, 1153, 1103, 1005, 983, 921, 786, 761, 531 см⁻¹.

2.2.11. Синтез ионных жидкостей на основе [2-B₁₀Br₉S(*n*-C₁₈H₃₇)₂]⁻ (*EMIM*)[2-B₁₀Br₉S(*n*-C₁₈H₃₇)₂] (88)

Соль (EMIM)[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂] (0.5 г, 0.65 ммоль) помещали в колбу на 25 мл и растворяли в 5 мл ацетонитрила. Полученный раствор охлаждали на ледяной бане до 0 °C, после чего медленно по каплям приливали 3-х кратный избыток раствора элементарного брома (0.88 мл, 17.5 ммоль) в 2 мл ацетонитрила в среде сухого аргона при постоянном Затем медленно нагревали реакционный раствор до перемешивании. комнатной температуры и оставляли на 2 суток, после чего реакционную смесь упаривали на масляном насосе до полного удаления летучих продуктов реакции. Полученную вязкую массу очищали флэш-хроматографией (SiO₂). Затем полученной стеклообразной массе приливали 10 к ΜЛ дистиллированной воды и обрабатывали на ультразвуковой ванне в течение 10 минут с образованием мелкодисперсного бело-желтого осадка, который был отфильтрован и высушен на лиофильной сушке. Выход 0.84 г, 0.57 ммоль (87%).

Данные элементного анализа для C42H85B10Br9N2S - Вычислено (%): C 34.14; H 5.80; N 1.89; S 2.17; Найдено (%): C 34.02; H 5.73; N 1.76; S 2.01. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 8.96 (s, 1H, NC<u>H</u>N), 7.26 (s, 1H, C<u>H</u>), 7.24 (s, 1H, C<u>H</u>), 4.30 (m, 2H, NC<u>H</u>₂), 3.98 (s, 3H, NC<u>H</u>₃), 3.45 (m, 4H, SC<u>H</u>₂), 1.75 (m, 4H, SCH₂C<u>H</u>₂), 1.56 (t, 3H, NCH₂C<u>H</u>₃), 1.27 (m, 30H, C3<u>H</u>₂-C17<u>H</u>₂), 0.88 (t, 3H, C<u>H</u>₃). ¹³C ЯМР (CD₂Cl₂, м.д.): 136.5 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.5 (<u>C</u>H), 45.5 (N<u>C</u>H₂), 39.2 (S<u>C</u>H₂), 36.7 (N<u>C</u>H₃), 32.9 (SCH₂<u>C</u>H₂), 29.7-26.4 (C3-C16), 22.7 (<u>C</u>17H₂), 13.9 (<u>C</u>18H₃). *U*K (CCl₄): 3137, 3108, 2972, 2929, 2872, 1704, 1672, 1571, 1413, 1361, 1245, 1159, 1111, 1007, 961, 832, 783, 719, 634, 434 см⁻¹.

$(BMIM)[2-B_{10}Br_9S(n-C_{18}H_{37})_2]$ (89)

Получали по аналогичной методике для соединения **88**. Из (**BMIM**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.63 ммоль) и Br₂ (0.85 мл, 17.0 ммоль) получено (**BMIM**)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.83 г, 0.55 ммоль). Выход 88%.

Данные элементного анализа для C44H89B10Br9N2S - Вычислено (%): C 35.10; H 5.96; N 1.86; S 2.13; Hайдено (%): C 34.98; H 5.81; N 1.73; S 2.02. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 8.98 (s, 1H, NC<u>H</u>N), 7.23 (s, 1H, C<u>H</u>), 7.22 (s, 1H, C<u>H</u>), 4.25 (m, 2H, NC<u>H</u>₂), 3.98 (s, 3H, NC<u>H</u>₃), 3.45 (m, 4H, SC<u>H</u>₂), 1.88 (m, 2H, NCH₂CH₂), 1.75 (m, 4H, SCH₂C<u>H</u>₂), 1.26 (m, 32H, (N)C<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 3H, N-C<u>H</u>₃), 0.88 (t, 3H, S-C<u>H</u>₃), 2.10-0.60 (m, 9H, B₁₀<u>H</u>₉). ¹³C ЯМР (CD2Cl2, м.д.): 136.8 (NCHN), 123.4 (CH), 121.8 (CH), 50.1 (NCH₂), 39.2 (SCH₂), 36.8 (NCH₃), 32.9 (SCH₂CH₂), 32.1 (NCH₂CH₂), 29.7-26.4 (C3-C16), 22.7 (C17H₂), 19.5 ((N)CH₂), 13.9 (C18H₃), 13.3 ((N)CH₃). ИК (CCl₄): 3142, 3111, 2971, 2924, 2869, 1708, 1672, 1572, 1415, 1360, 1241, 1161, 1107, 1006, 962, 834, 785, 717, 629, 432 cm⁻¹.

$(MOIM)[2-B_{10}Br_9S(n-C_{18}H_{37})_2]$ (90)
Получали по аналогичной методике для соединения **88**. Из (**MOIM**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.59 ммоль) и Br₂ (0.80 мл, 15.9 ммоль) получено (**MOIM**)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.76 г, 0.49 ммоль). Выход 83%.

Данные элементного анализа для C48H97B10Br9N2S - Вычислено (%): C 36.92; H 6.26; N 1.79; S 2.05; Hайдено (%): C 36.76; H 6.13; N 1.68; S 1.95. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 8.98 (s, 1H, NC<u>H</u>N), 7.23 (s, 1H, C<u>H</u>), 7.22 (s, 1H, C<u>H</u>), 4.25 (m, 2H, NC<u>H</u>₂), 3.98 (s, 3H, NC<u>H</u>₃), 3.45 (m, 4H, SC<u>H</u>₂), 1.88 (m, 2H, NCH₂CH₂), 1.75 (m, 4H, SCH₂C<u>H</u>₂), 1.26 (m, 32H, (N)C<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.98 (t, 3H, N-C<u>H</u>₃), 0.88 (t, 3H, S-C<u>H</u>₃). ¹³C ЯМР (CD2Cl2, м.д.): 136.8 (N<u>C</u>HN), 123.4 (<u>C</u>H), 121.8 (<u>C</u>H), 50.1 (N<u>C</u>H₂), 39.2 (S<u>C</u>H₂), 36.8 (N<u>C</u>H₃), 32.9 (SCH₂<u>C</u>H₂), 32.1 (NCH₂<u>C</u>H₂), 29.7-26.4 (C3-C16), 22.7 (<u>C</u>17H₂), 19.5 ((N)<u>C</u>H₂), 13.9 (<u>C</u>18H₃), 13.3 ((N)<u>C</u>H₃). ИК (CCl₄): 3134, 3107, 2970, 2931, 2870, 1701, 1671, 1569, 1417, 1365, 1244, 1161, 1101, 1003, 965, 837, 781, 715, 634, 434 cm⁻¹.

$(Hexadecylpyridinium)[2-B_{10}Br_9S(n-C_{18}H_{37})_2]$ (91)

Получали по аналогичной методике для соединения **88**. Из (**Hexadecylpyridinium**)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.52 ммоль) и Br₂ (0.70 мл, 14.1 ммоль) получено (**Hexadecylpyridinium**)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.77 г, 0.46 ммоль). Выход 88%.

Данные элементного анализа для C57H112B10Br9NS - Вычислено (%): C 40.97; H 6.75; N 0.84; S 1.92; Найдено (%): C 40.83; H 6.69; N 0.76; S 1.84. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 8.97 (d, 2H, C<u>H</u>(2,6)), 8.48 (d, 1H, CH(4)), 8.08 (m, 2H, CH(3,5), 4.73 (t, 2H, NC<u>H₂</u>), 3.46 (m, 4H, SC<u>H₂</u>), 2.03 (m, 2H, NCH₂<u>C</u>H₂), 1.74 (m, 4H, SCH₂C<u>H₂</u>), 1.26 (m, 58H, (N)C3<u>H₂-C15H₂</u>, SC3<u>H₂-C17H₂</u>), 0.88 (t, 6H, N-C<u>H₃</u>, S-C<u>H₃</u>). ¹³C ЯМР (CD₂Cl₂, м.д.): 145.8 (<u>C</u>H, 2,6), 145.2 (<u>C</u>H, 4), 129.2 (<u>C</u>H, 3,5), 63.1 (N<u>C</u>H₂), 39.2 (S<u>C</u>H₂), 32.5-26.7 $(N\underline{C}2H_2-\underline{C}12H_2, S\underline{C}2H_2-\underline{C}16H_2), 23.3 (N\underline{C}13H_2, S\underline{C}17H_2), 14.4 (N\underline{C}14H_2, S\underline{C}18H_2).$ *UK* (CCl₄): 3124, 3059, 3031, 2955, 2934, 1661, 1507, 1492, 1462, 1311, 1159, 801, 687, 436 cm⁻¹.

$((CH_3)_3(C_{14}H_{29})N)[2-B_{10}Br_9S(n-C_{18}H_{37})_2] (92)$

Получали по аналогичной методике для соединения **88**. Из ((*CH*₃)₃(*C*₁₄*H*₂₉)*N*)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.55 ммоль) и Br₂ (0.74 мл, 14.85 ммоль) получено ((*CH*₃)₃(*C*₁₄*H*₂₉)*N*)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.73 г, 0.45 ммоль). Выход 82%.

Данные элементного анализа для C53H112B10Br9NS - Вычислено (%): C 39.23; H 6.95; N 0.86; S 1.98; Найдено (%): C 39.02; H 6.79; N 0.81; S 1.82. ¹¹В ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 3.45 (m, 4H, SC<u>H</u>₂), 3.35 (m, 2H, NC<u>H</u>₂), 3.22 (s, 9H, NC<u>H</u>₃), 1.75 (m, 4H, SCH₂C<u>H</u>₂), 1.74 (m, 2H, NCH₂C<u>H</u>₂), 1.26 (m, 52H, (N)C3<u>H</u>₂-C13<u>H</u>₂, C3<u>H</u>₂-C17<u>H</u>₂), 0.88 (t, 6H, N-C<u>H</u>₃, S-C<u>H</u>₃). ¹³C ЯМР (CD₂Cl₂, м.д.): 67.9 (NCH₂), 54.2 (NCH₃), 39.2 (SCH₂), 32.9 (SC2H₂), 32.5-23.3 (NC2H₂-C13H₂, SC2H₂-C17H₂), 14.4 (NC14H₂, SC18H₂). ИК (CCl₄): 2972, 2931, 2872, 2860, 1465, 1404, 1379, 1311, 1253, 1148, 1119, 970, 890, 841, 788, 759, 433 cm⁻¹.

$((C_{12}H_{25})_4N)[2-B_{10}Br_9S(n-C_{18}H_{37})_2]$ (93)

Получали по аналогичной методике для соединения **88**. Из ((*C*₁₂*H*₂₅)₄*N*)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.37 ммоль) и Br₂ (0.5 мл, 10 ммоль) получено ((*C*₁₂*H*₂₅)₄*N*)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.66 г, 0.32 ммоль). Выход 87%.

Данные элементного анализа для C84H174B10Br9NS - Вычислено (%): C 49.03; H 8.52; N 0.68; S 1.56; Найдено (%): C 48.88; H 8.36; N 0.62; S 1.49. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 3.45 (m, 4H, SC<u>H₂</u>), 3.17 (m, 8H, NC<u>H₂</u>), 1.75 (m, 4H, SCH₂C<u>H₂</u>), 1.67 (m, 8H, NCH₂C<u>H₂</u>), 1.26 (m, 104H, (N)C3<u>H₂-C11<u>H₂</u>, C3<u>H₂-C17H₂</u>), 0.88 (t, 6H, N-C<u>H₃</u>, S-C<u>H₃</u>), 2.10-0.60 (m, 9H,</u> B₁₀<u>H</u>₉). ¹³С ЯМР (CD₂Cl₂, м.д.): 59.1 (N<u>C</u>H₂), 39.2 (S<u>C</u>H₂), 32.9 (S<u>C</u>2H₂), 31.9-22.1 (N<u>C</u>2H₂-<u>C</u>11H₂, S<u>C</u>3H₂-<u>C</u>17H₂), 13.9 (N<u>C</u>12H₂, S<u>C</u>18H₂). ИК (CCl₄): 2959, 2931, 2873, 2854, 1469, 1407, 1370, 1311, 1245, 1153, 1122, 971, 891, 842, 788, 760, 432 см⁻¹.

$((C_6H_{13})_3C_{14}H_{29}P)[2-B_{10}Br_9S(n-C_{18}H_{37})_2] (94)$

Получали по аналогичной методике для соединения **88**. Из ((*C*₆*H*₁₃)₃*C*₁₄*H*₂₉*P*)[**2**-**B**₁₀**H**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.5 г, 0.44 ммоль) и Br₂ (0.59 мл, 11.88 ммоль) получено ((*C*₆*H*₁₃)₃*C*₁₄*H*₂₉*P*)[**2**-**B**₁₀**Br**₉**S**(*n*-**C**₁₈**H**₃₇)₂] (0.72 г, 0.39 ммоль). Выход 88%.

Данные элементного анализа для C68H142B10Br9PS - Вычислено (%): C 44.14; H 7.74; S 1.73; Hайдено (%): C 44.01; H 7.63; S 1.52. ¹¹B ЯМР (CD₂Cl₂, м.д.): -0.5 (1B, B1), -4.1 (1B, B10), -10.1 (1B, B4), -13.1 (6B, B3, 5-9), -16.7 (1B, B2). ¹H ЯМР (CD₂Cl₂, м.д.): 3.45 (m, 4H, SC<u>H₂</u>), 2.20 (m, 8H, PC<u>H₂</u>), 1.76 (m, 4H, SCH₂C<u>H₂</u>), 1.51 (m, 8H, PCH₂C<u>H₂</u>), 1.26 (m, 70H, (P)C3<u>H₂-C5H₂</u>, (P)C3<u>H₂-C13<u>H₂</u>, C3<u>H₂-C17H₂</u>), 0.91 (t, 6H, P-C<u>H₃</u>), 0.88 (t, 4H, P-C<u>H₃</u>, S-C<u>H₃</u>). ¹³C ЯМР (CD₂Cl₂, м.д.): 39.2 (SCH₂), 32.9 (SC2H₂), 32.5-19.4 (SC3H₂-C17H₂, P(C₅H₁₀)₃, P(C₁₃H₂₆), 14.4 (PC14H₂, SC18H₂), 14.3 (PC6H₂). ИК (CCl₄): ИК (CCl₄): 2972, 2931, 2879, 2852, 1471, 1408, 1399, 1302, 1236, 1146, 1117, 972, 897, 834, 785, 759, 434 см⁻¹.</u>

Глава 3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Основной целью данной работы является разработка методов синтеза пергалогенированных производных клозо-декаборатного аниона с сера- и азотсодержащими функциональными группами, установление их физикохимических свойств и исследование полученных соединений в качестве перспективных компонентов ионных жидкостей. Для осуществления этого было необходимо разработать методы синтеза пергалогенированных сульфониевых $[B_{10}X_9SR_2]^{-}$ (X = Cl, Br) и аммониевых $[B_{10}X_9NR_3]^{-}$ (X = Cl, Br) производных клозо-декаборатного аниона с помощью таких галогенирующих агентов, как сульфурилхлорид, N-хлорсукцинимид и элементарный бром. Исследования полученных соединений показали, что наиболее устойчивыми производными в случае клозо-декаборатного аниона являются сульфониевые производные. Изучение этих производных с линейными алкильными заместителями показало, что увеличение длины углеводородной цепи в заместителе существенно уменьшает температуру плавления конечных соединений. На основании этой информации, были разработаны методы синтеза ионных жидкостей на основе анионов $[2-B_{10}X_9S(n-C_{18}H_{37})_2]^-$ (X = H, Cl, Br) с различными имидазолевыми (EMIM, BMIM, MOIM), аммониевыми $(Bu_4N^+, (C_{12}H_{25})_4N^+, (CH_3)_3(C_{14}H_{29})N^+)$, гексадецилпиридиниевом $(C_5H_5N^+ (CH_2)_{15}CH_3$), а также фосфониевым $((C_6H_{13})_3(C_{14}H_{29})P^+)$ катионами.

3.1. Галогенирование ди-S,S-замещенных производных *клозо*-декаборатного аниона

Хлорирование. Обсуждение синтеза и данные ЯМР и ИК спектроскопии.

На основании литературных данных, наиболее удобным способом проведения реакции полного галогенирования борного остова в кластерных анионах бора является взаимодействие исходных солей бороводородов с сульфурилхлоридом SO₂Cl₂, как галогенирующим агентом. Данный метод отличается достаточной простотой проведения реакции и не требует специфического оборудования. Реакция протекает при комнатной

температуре в ацетонитриле в инертной атмосфере и заканчивается спустя 60 часов с получением соединений, с полностью галогенированным борным остовом (Схема 31).

Схема 31. Схема хлорирования ди-S,S-замещенных сульфониевых производных *клозо*-декаборатного аниона

По данным ¹¹В ЯМР спектроскопии (Рисунок 16), можно установить, что в первые минуты происходит активное замещение апикальных вершин (1,10) в борном остове, что сопровождается бурным выделением тепла и газа. На втором этапе реакциям замещения подвергаются атомы водорода, находящиеся в противоположной части борного остова от ипсо-атома (4,7,8), при этом скорость протекания реакции сильно замедляется. Последними позициями в кластере бора для протекания процесса галогенирования, являются позиции, которые находятся рядом с ипсо-атомом бора (3,5,6,9). Данное обстоятельство скорей всего связано со стерическими факторами при протекании реакций хлорирования в этих позициях.

Рисунок 16. ¹¹В ЯМР спектры процесса хлорирования (*n*-Bu₄N)[2-B₁₀H₉S(*n*-Pr)₂] с временным интервалом: 0 мин, 2 мин, 10 мин, 2 часа, 6 часов, 24 часа, 48 часов, 60 часов

В ¹¹В ЯМР спектре конечного продукта (Рисунок 17), сигналы от апикальных вершин полиэдра наблюдаются при -0.7 м.д. и -3.4 м.д. Сигнал от ипсо-атома бора смещается в область слабого поля на 3 м.д. Сигнал от атома В4 наблюдается при -6.1 м.д., сигналы от остальных атомов бора в экваториальном поясе находятся при -10.3 м.д. Данная картина характерна для всех соединений с линейной структурой органического заместителя. Тогда как небольшое отличие наблюдается в соединении с изо-пропильными группами. По данным ¹¹В ЯМР спектроскопии, сигналы от апикальных вершин расходятся на большее расстояние, чем в других полученных производных, и оно составляет 0.8 м.д. Этот эффект может быть вызван взаимодействием одной из изопропильных групп с атомом хлора в ближайшем апикальном атоме бора.

Рисунок 17. ¹¹В ЯМР спектры соединений (*n*-Bu₄N)[2-B₁₀Cl₉S(*n*-Pr)₂] (верхний) и (*n*-Bu₄N)[2-B₁₀Cl₉S(*i*-Pr)₂] (нижний)

В ₁Н ЯМР спектре полученных соединений (Рисунок 18), сигнал от протонов α-метиленовых групп алкильного заместителя в сравнении с исходными негалогенированными соединениями смещается в слабое поле на 0.7 м.д., что связано с более высокими электроно-акцепторными свойствами перхлорированного кластера по сравнению с негалогенированными сульфониевыми производными *клозо*-декаборатного аниона. Кроме того, не наблюдается широкого сигнала в области 2.1-0.6 м.д., который соотвествует атомам водорода в борном остове для исходных негалогенированных производных.

Рисунок 18. ¹Н ЯМР спектр $(n-Bu_4N)[2-B_{10}Cl_9S(n-Pr)_2]$

В ¹³С ЯМР спектре (Рисунок 19) сигналы от α-метиленовых групп находятся при 40.9 м.д., а остальные сигналы практически не изменяются.

Рисунок 19. ¹³С ЯМР спектр (*n*-Ви₄N)[2-В₁₀Сl₉S(*n*-Pr)₂]

Однако более удобным методом исследования полноты протекания процесса галогенирования является ИК-спектроскопия. В ИК-спектре (Рисунок 20) соединения $(n-Bu_4N)[2-B_{10}Cl_9S(n-Pr)_2]$ наблюдается полное см⁻¹, 2516 которая исчезновение полосы при И 2470 является характеристической для валентных колебаний В-Н. Кроме того, наблюдается появление четырех полос при 1156, 1033, 1001, 525 см⁻¹, которые являются характеристическими для валентных колебаний B-Cl.

Рисунок 20. ИК спектры соединений (*n*-Bu₄N)[2-B₁₀H₉S(*n*-Pr)₂] (a) и (*n*-Bu₄N)[2-B₁₀Cl₉S(*n*-Pr)₂] (б) в таблетках KBr

Обсуждение данных рентгеноструктурного анализа

На основании рентгеноструктурного анализа можно утверждать, что в результате полного хлорирования сульфониевых производных, во всех полученных соединениях геометрия борного остова не искажена, длины связей В-В соответствуют аниону $[B_{10}H_{10}]^2$: 1.68(1)- 1.74(1) для связей апикальной вершины и 1.81(1)-1.88(1) для связей апикального пояса. Длины связей B-Cl для апикальных атомов бора B1 и B10 лежат в диапазоне 1.778(2) Å, 1.788(2) что заметно короче соответствующих связей для экваториальных атомов бора B3-B9, лежащих в диапазоне 1.796(2) Å -1.804(3) Å, что согласуется с длинами связей для незамещенного аниона в соли (Ph₄P)₂[B₁₀Cl₁₀] [18]. Длины связей B-S лежат в диапазоне 1.88(1)-1.92(1) Å, что соответствует значениям в других производных клозо-декаборатного

аниона сульфониевого типа. Строение анионов для соединений **25**, **26**, **31-34**, **37**, **38** представлено на рисунке ниже (Рисунок 21).

Рисунок 21. Строение хлорированных ди-S,S-замещенных сульфониевых производных *клозо*-декаборатного аниона

Рисунок 21, продолжение. Строение хлорированных ди-S,S-замещенных сульфониевых производных *клозо*-декаборатного аниона

Бромирование. Обсуждение синтеза и данные ЯМР и ИК спектроскопии

В отличие от синтеза хлорированных производных, реакции полного бромирования проще осуществлять с помощью элементарного брома, так как данный галогенирующий агент сам по себе является жидкостью, что упрощает работу с ним. Проведение реакции в инертной атмосфере в среде ацетонитрила, позволяет получить полностью бромированные производные уже спустя сутки (Схема 32).

Схема 32. Схема бромирования ди-S,S-замещенных сульфониевых производных *клозо*-декаборатного аниона

¹¹В ЯМР спектры сульфониевых производных после проведения реакции полного бромирования кластерного остова (Рисунок 22) по своей картине практически не отличаются от своих перхлорированных аналогов.

Мы также наблюдаем 2 сигнала при -0.5 и -4.1 м.д., которые относятся к апикальным вершинам. Сигналы от атомов бора в экваториальном поясе находятся при -10.1 (B4), -13.1 (B3, B5, B6-B9), -16.7 (B2) м.д.

Рисунок 22. ¹¹В ЯМР спектры соединений (*n*-Bu₄N)[2-B₁₀Cl₉S(*n*-Pr)₂] (верхний) и (*n*-Bu₄N)[2-B₁₀Br₉S(*n*-Pr)₂] (нижний)

В отличие от хлорированных сульфониевых производных *клозо*декаборатного аниона, в ¹Н ЯМР спектре $[B_{10}Br_9S(n-Pr)_2]^-$ (Рисунок 23) после процесса бромирования наблюдается интересная картина. Сигнал от протонов α-метиленовых групп еще больше смещается в область слабого поля, на 0.2 м.д. Кроме того, из-за разницы в электронных и физических свойств атомов галогенов, наблюдается неэквивалентность протонов от βметиленовых групп, что выражается в образовании двух сложных мультиплетов при 1.94 и 1.87 м.д. Остальные сигналы остаются без изменений.

Рисунок 23. ¹Н ЯМР спектр (*n*-Bu₄N)[2-B₁₀Br₉S(*n*-Pr)₂]

¹³С ЯМР спектры полученных бромированных сульфониевых производных *клозо*-декаборатного аниона (Рисунок 24) практически полностью идентичны ¹³С ЯМР спектрам хлорированных аналогов.

Рисунок 24. ¹³С ЯМР спектр (*n*-Bu₄N)[2-B₁₀Br₉S(*n*-Pr)₂]

Обсуждение данных рентгеноструктурного анализа

Строение полученных соединений **52-54**, **56**, **57**, **59**, **60**, **64**, **65** было подтверждено с помощью рентгеноструктурного анализа монокристалла (Рисунок 25). Отличительной особенностью данных соединений является высокая способность к кристаллизации. В результате чего, были получены структуры солей с алкильными заместителями с различной длиной алкильной цепи в виде тетрабутиламмониевых солей.

Рисунок 25, продолжение. Строение бромированных ди-S,S-замещенных сульфониевых производных *клозо*-декаборатного аниона

 $[2-B_{10}Br_9-cyclo-S(CH_2)_4]^ [2-B_{10}Br_9-cyclo-S(CH_2CH_2)_2O]^-$

Рисунок 25. Строение бромированных ди-S,S-замещенных сульфониевых производных клозо-декаборатного аниона

Кристаллографически независимая часть моноклинной элементарной ячейки (P2₁/c) (*n*-Bu₄N)[2–B₁₀Br₉S(*n*-C₁₂H₂₅)₂] и триклинных ячеек солей $(n-Bu_4N)[2-B_{10}Br_9S(n-Pr)_2],$ $(n-Bu_4N)[2-B_{10}Br_9S(i-Pr)_2],$ (*n*-Bu₄N)[2-B₁₀Br₉S(*n*-Bu)₂] и (*n*-Bu₄N)[2-B₁₀Br₉S(*n*-C₁₈H₃₇)₂] содержат по одному катиону и аниону. Изоппропильные группы экзо-полиэдрического заместителя аниона $[2-B_{10}Br_9S(i-Pr)_2]^-$ разупорядочены и повернуты друг относительно друга так, что плоскости С1С2С3 и С4С5С6 (Рисунок 26) образуют углы 61.2 и 66.0°.

Рисунок 26. Плоскости C1C2C3 и C4C5C6 в анионе $[2-B_{10}Br_9S(i-Pr)_2]^-$

Во всех полученных соединениях геометрия борного остова не искажена, длины связей В-В соответствуют незамещенному аниону $[B_{10}H_{10}]^{2-}$ и производным $[2-B_{10}H_9SR_2]^{2-}$ 1.656–1.704 для связей апикальной вершины и 1.802–1.865 для связей апикального пояса. Длины связей В-Вг для апикальных атомов бора В1 и В10 лежат в диапазоне 1.925–1.956 Å, что в среднем немного короче соответствующих связей для экваториальных атомов бора В3-В9, лежащих в диапазоне 1.933–1.969 Å, что согласуется с другими пербромированными *клозо*-декаборатами [60,88,89]. Длины связей В-S лежат в диапазоне 1.887–1.912 Å, что так же соответствует аналогичным связям в других производных *клозо*-декаборатного аниона сульфониевого типа [88,90]. Длины связей S–C лежат в диапазоне 1.814–1.838 Å.

Можно отметить, что в кристаллической упаковке соединения $(n-\text{Bu}_4\text{N})[2-\text{B}_{10}\text{Br}_9\text{S}(n-\text{C}_{18}\text{H}_{37})_2]$ наблюдается образование послойного строения. Первый слой состоит из 2 анионов $[2-\text{B}_{10}\text{Br}_9\text{S}(n-\text{C}_{18}\text{H}_{37})_2]^{-}$, в котором алкильные группы от двух различных анионов направлены друг к

другу (Рисунок 27). Между слоями анионов располагаются слои катионов (*n*-Bu₄N)⁺. Скорей всего данный эффект вызван большим числом гидрофобных взаимодействий в данном соединении.

Рисунок 27. Кристаллическая структура соединения (*n*-Bu₄N)[2-B₁₀Br₉S(*n*-C₁₈H₃₇)₂] по данным PCA

3.2. Получение пергалогенированных сульфанил-*клозо*-декаборатных анионов Обсуждение синтеза и данные ЯМР и ИК спектроскопии

В нескольких изученных работах приводятся методики, в которых на первой стадии получали пергалогенированные приозводные с последующим алкилированием соответствующей функциональной группы. В ходе данной работы нами также были исследована возможность получения замещенных производных путем алкилирования пергалогенированного сульфонио-*клозо*-декаборатного аниона.

Однако, провести галогенирование сульфонио-клозо-декаборатного аниона не представляется возможным. По данным ¹¹В ЯМР спектроскопии, в процессе галогенирования данного аниона происходит отщепление сульфонильной функциональной группы, что В итоге приводит К образованию $[B_{10}X_{10}]^{2-}$ (X = Cl, Br) аниона. Но эту проблему можно решить,

если в качестве исходного соединения для процесса галогенирования использовать производные с тетраметилтиомочевиной [2-B₁₀H₉SC(NMe₂)₂]⁻. После чего можно осуществить гидролиз полученных соединений по тиокарбонильной группе.

Нами было галогенирование соединений осуществлено c тетраметилтиомочевиной в виде тетрабутиламмониевых солей с получением конечных продуктов состава $(n-Bu_4N)[2-B_{10}X_9SC(NMe_2)_2]$ (X = Cl, Br). Общие картины на ¹¹В ЯМР спектрах полученных изменения соединений практически для пергалогенированных сульфониевых идентичны производных клозо-декаборатного аниона. На ¹¹В ЯМР спектре (Рисунок 28) соединения $(n-Bu_4N)[2-B_{10}Cl_9SC(NMe_2)_2]$ мы наблюдаем два сигнала от апикальных вершин борного остова при -3.4 и -5.5 м.д., тогда как сигнал от ипсо-атома находится при -16.6 м.д. Сигналы от остальных атомов бора экваториального пояса сливаются в один широкий сигнал при -12.0 м.д. Тогда как в соединении $(n-Bu_4N)[2-B_{10}Br_9SC(NMe_2)_2]$ сигналы от апикальных вершин находятся при -1.9 и -4.8 м.д. Остальные сигналы от атомов бора в полиэдре наблюдаются при -13.7 м.д. в виде одного широкого сигнала.

Рисунок 28. ¹¹В ЯМР спектры соединений $(n-Bu_4N)[2-B_{10}X_9SC(NMe_2)_2]$ (X = Cl, Br)

В ¹Н ЯМР спектрах полученных соединений $(n-Bu_4N)[2-B_{10}X_9SC(NMe_2)_2]$ (X = Cl, Br) мы не наблюдаем существенных изменений для протонов в тиокарбонильной группе в сравнении с исходным соединением.

Тогда как на ¹³С ЯМР спектрах для этих соединений сигнал от карбонильного атома углерода сдвигается в сторону сильного поля почти на 11 м.д. и для хлорированного производного конечное значение составляет 172.5 м.д., а для бромированного 172.2 м.д. Данный эффект вызван более сильными электроноакцепторными свойствами атомов галогенов. Сигналы

от метильных групп на ¹³С ЯМР спектрах галогенированных соединений наоборот смещаются в область слабого поля примерно на 1 и 1.4 м.д. для хлорированного и бромированного анионов.

Последующий гидролиз этих соединений можно провести с помощью гидразина согласно схеме 33:

Схема 33. Схема гидролиза перхлорированных производных с тиомочевиной

На ¹¹В ЯМР спектрах (Рисунок 29) конечных соединений $(n-Bu_4N)_2[2-B_{10}X_9SH]$ (X = Cl, Br) после гидролиза мы наблюдаем небольшое смещение сигналов от всех атомов бора в полиэдре в область слабого поля, при этом сигналы от апикальных вершин борного остова сливаются в один сигнал и наблюдаются при -2.5 и -1.1 м.д., сигналы от экваториальных атомов сближаются на 2.5 м.д., и составляют -12.0 и -16.6 для хлорированного, и -13.7 для бромированного производных.

Рисунок 29. ¹¹В ЯМР спектры соединений $(n-Bu_4N)_2[2-B_{10}X_9SH]$ (X = Cl, Br)

В результате полного галогенирования борного остова, на ¹Н ЯМР спектрах (Рисунок 30) полученных соединений можно наблюдать смещение сигнала от протона сульфониевой группы в область слабого поля, при этом, чем сильнее электроно-акцепторные свойства атома галогена, тем сильнее смещение сигнала. Для хлорированного данная величина составляет почти 0.8 м.д., а для бромированного – 1 м.д.

Рисунок 30. ¹Н ЯМР спектры соединений $(n-Bu_4N)_2[2-B_{10}X_9SH]$ (X = H, Cl, Br)

Обсуждение данных рентгеноструктурного анализа

Строение сульфониевых производных тиомочевиной было с установлено с помощью РСА монокристалла (Рисунок 31). Общее строение данных соединений практически не отличается от других перхлорированных сульфониевых производных клозо-декаборатного аниона. Длина связей апикальных и экваториальных связей B-Br составляет 1.93 (2) Å, что заметно короче соответствующих связей для экваториальных атомов бора ВЗ-В9, длина связи которых равна 1.98(2) Å. В тоже время длина связи B-S составляет 1.89(2) Å практически не изменяется И лля обоих галогенированных производных. Строение анионов в соединениях 23, 50 представлено на рисунке 31.

Рисунок 31. Строение анионов $[2-B_{10}X_9SC(NMe_2)_2]^-$ (X = Cl, Br) по данным РСА монокристалла

3.3. Галогенирование три-N,N,N-замещенных производных *клозо*-декаборатного аниона Хлорирование незамещенного аммониевого производного *клозо*-декаборатного аниона

Обсуждение синтеза и данных ЯМР и ИК спектроскопии

В отличие от сульфониевых производных клозо-декаборатного аниона, аммониевые производные данного типа аниона обладают более высокой стабильностью по замещенной позиции, что позволяет нам получать пергалогенированные незамещенные аммониевые производные клозодекаборатного аниона состава $[2-B_{10}X_9NH_3]^-$ (X = Cl, Br). В литературе уже есть описание метода синтеза перхлорированного аммониевого производного [2-B₁₀Cl₉NH₃]⁻, однако в ней используемым галогенирующим агентом являлся элементарный хлор [60]. Кроме того, исследование методов алкилирование этих соединений показало, что полное замещение возможно только при использовании небольших алкильных заместителей, таких как Me. Использование более объемных алкилгалогенидов приводит К образованию только ди-N,N-замещенных производных клозо-декаборатного аниона.

Для изучения возможности использования сульфурилхлорида как хлорирующего агента для аммониевых производных, первыми объектами исследования являлись незамещенные аммониевые производных *клозо*декаборатного аниона (n-Bu₄N)[2-B₁₀H₉NH₃]. Было установлено, что реакция протекает до полного замещения всех атомов водорода в борном остове на хлор, при этом не требуется никакого нагрева. Реакция завершается спустя 60 часов, как и для описанных выше сульфониевых производных (Схема 35).

Схема 34. Схема хлорирования аммонио-клозо-декаборатного аниона

В результате чего, на ¹¹В ЯМР спектре (Рисунок 32) конечного продукта (n-Bu₄N)[B₁₀Cl₉NH₃] мы можем наблюдать группу сигналов с интегральным соотношением 1:1:7:1. Два сигнала в области слабого поля при -2.9 и -4.8 м.д. относятся к двум апикальным вершинам B10 и B1 соответственно. Тогда как остальные сигналы относятся к экваториальным атомам бора.

Рисунок 32. ¹¹В ЯМР спектр (Bu₄N)[2-B₁₀Cl₉NH₃]

Хлорирование три-N,N,N-замещенных производных *клозо*-декаборатного аниона

Обсуждение синтеза и данных ЯМР и ИК спектроскопии

Следующим объектом исследования процессов хлорирования являлись три-N,N,N-замещенные производные клозо-декаборатного аниона. В отличие от сульфониевых производных, процесс хлорирования аммониевых замещенных может протекать двумя путями (Схема 35). В результате галогенирования триN,N,N-замещенных производных клозо-декаборатного аниона $[B_{10}H_9NR_3]^-$ (R = *n*-Pr, *n*-Bu, *n*-C₈H₁₇, *n*-C₁₂H₂₅, *n*-C₁₈H₃₇) при использовании сульфурилхлорида в качестве галогенирующего агента происходит перестройка борного остова, в результате чего ипсо-атом бора становится апикальным. Можно точно сказать, что данный процесс происходит на первых стадиях галогенирования. Так как если использовать более слабый галогенирующий агент, такой как N-хлорсукцинимид, которому для протекания данного процесса необходим нагрев, не наблюдается перестройки борного остова и ипсо-атом остается на своем месте. Однако, в обоих случаях получить полностью галогенированные три-N,N,N-замещенные производные не представляется возможным, что связано со стерическими затруднениями от трехзамещенного заместителя.

Схема 35. Влияние галогенирующего агента на процесс хлорирования три-N,N,N-замещенных аммониевых производных *клозо*-декаборатного аниона

Анализ ¹¹В ЯМР спектров (Рисунок 33) показал, что в первом случае использовании сульфурилхлорида хлорирования при для три-N.N.Nзамещенных производных через 5 дней в реакционной смеси присутствует смесь не полностью галогенированных продуктов с различной степенью замещения. Основываясь на литературных данных по получению частично галогенированных карборанов или замещенных аммониевых производных клозо-додекаборатного аниона, можно утверждать, ЧТО И В случае хлорирования три-N,N,N-замещенных производных клозо-декаборатного аниона последними атомами водорода, которые заменяются на хлор, являются атомы, находящиеся ближе всего к ипсо-атому бора в полиэдре (В-NR₃). Процесс полного галогенирования можно завершить при помощи

обработки соединений ультрафиолетом в ацетонитриле с помощью новой порции сульфурилхлорида при нагревании до 50°С в течение 2 дней. В конечном ¹¹В ЯМР спектре мы наблюдаем следующую картину. Сигнал при 2.9 м.д. относится к апикальной вершине В10. Сигнал при -7.7 к атому бора в полиэдре, связанному с атомом азота (В1). Остальные сигналы от оставшихся атомов бора в обоих экваториальных поясах сливаются в один широкий сигнал при -12.1 м.д.

Рисунок 33. ¹¹В ЯМР спектр (*n*-Ви₄N)[1-В₁₀Cl₉N(*n*-Pr)₃]

На ¹Н ЯМР спектре (Рисунок 34) соединения (*n*-Bu₄N)[1-B₁₀Cl₉N(*n*-Bu)₃] сигнал от протонов α-метиленовых групп смещается в область слабого поля на 0.8 м.д., что практически аналогично для перхлорированных сульфониевых производных. Остальные сигналы практически не изменяются.

Похожая картина как и у сульфониевых производных наблюдается на ¹³С ЯМР спектрах (Рисунок 35) и для аммониевых производных. Сигнал от αметиленовых групп в алкильных заместителях смещается в область сильного поля на 0.8 м.д.

Рисунок 34. ¹Н ЯМР спектр (*n*-Bu₄N)[1-B₁₀Cl₉N(*n*-Bu)₃]

Рисунок 35. ¹³С ЯМР спектр (*n*-Bu₄N)[1-B₁₀Cl₉N(*n*-Bu)₃]

Анализ протекания процесса галогенирования с помощью Nхлорсукцинимида позволил установить с высокой степенью вероятности, что происходит галогенирования практически всего борного остова, кроме позиций 6 и 9, что опять же связано со стерическими затруднениями. Как и в 1 случае, процесс можно завершить с помощью сульфурилхлорида и обработкой УФ при нагревании.

На ¹¹В ЯМР спектре (Рисунок 36) конечного продукта после взаимодействия с N-хлорсукцинимидом можно выделить 3 типа сигналов: хлорированные апикальные вершины борного остова при 3.0 м.д., группу сигналов при -5.7, -9.0, -12.7 м.д. относящиеся к замещенным позициям в экваториальных поясах, а оставшийся сигнал при -21.2 м.д. является недогалогенированными позициями борного остова, что подтверждается ¹¹В ЯМР спектроскопией без подавления спин-спинового взаимодействия. Скорей всего данный сигнал от атомамов В6 и В9 в полиэдре.

Рисунок 36. ¹¹В ЯМР спектр (*n*-Bu₄N)[2-B₁₀H₉N(*n*-Bu)₃] после N-хлорсукцинимида

Дальнейшая обработка этого соединения сульфурилхлоридом с помощью ультрафиолета при небольшом нагревании до 50°С на ¹¹В ЯМР спектре конечного продукта (*n*-Bu₄N)[2-B₁₀Cl₉N(*n*-Bu)₃] (Рисунок 37) мы наблюдали полное исчезновение сигнала от оставшихся атомов В, связанных с Н, что служит доказательством полного замещения борного остова. При этом сигналы от двух апиклаьных вершин смещается влево на 2 м.д., тогда как остальные сигналы от экваториальных атомов бора немного расходятся до значений -7.7, -11.0, -14.7 м.д.

Рисунок 37. ¹¹В ЯМР спектр (*n*-Bu₄N)[2-B₁₀Cl₉N(*n*-Bu)₃]

По данным ¹Н и ¹³С ЯМР спектроскопии, нахождение атома в борном полиэдре со связью В-N, практически не влияет на их ¹Н (Рисунок 38) и ¹³С (Рисунок 39) ЯМР спектры. Сигнал от протонов α -метиленовых групп в соединении (*n*-Bu₄N)[2-B₁₀Cl₉N(*n*-Bu)₃] смещается в область слабого поля на 140

0.9 м.д., относительно исходного соединения $(n-Bu_4N)[1-B_{10}H_9N(n-Bu)_3]$, тогда как ¹³С ЯМР спектр не отличается от ¹³С ЯМР спектра соединения $(n-Bu_4N)[1-B_{10}Cl_9N(n-Bu)_3]$.

Рисунок 38. ¹Н ЯМР спектр (*n*-Bu₄N)[2-B₁₀Cl₉N(*n*-Bu)₃]

Рисунок 39. ¹³С ЯМР спектр (*n*-Bu₄N)[2-B₁₀Cl₉N(*n*-Bu)₃]

На ИК-спектре (Рисунок 40) полностью галогенированного производного [2-В₁₀Cl₉N(*n*-Bu)₃]⁻ исчезает полоса при 2500 см⁻¹, которая является характеристической для валентных колебаний В-Н, и наблюдается появление сильных полос при 1160, 1012 и 516 см⁻¹, которые являются характеристическими для колебаний связи В-СІ.

Рисунок 40. ИК спектр (*n*-Bu₄N)[2-B₁₀Cl₉N(*n*-Bu)₃].

Обсуждение данных рентгеноструктурного анализа

Другим подтверждением перестройки в результате хлорирования три-N,N,N-замещенных аммониевых производных *клозо*-декаборатного аниона являются структуры анионов $[1-B_{10}Cl_9N(n-Pr)_3]$ и $[2-B_{10}Cl_9N(n-Pr)_3]^{-}$ полученные с помощью РСА монокристалла (Рисунок 41). Кристаллографически независимая часть триклинной ячейки (P1) соединения **40** содержит 1 катион $[Ag(PPh_3)_4]^+$ и 1 анион $[1-B_{10}Cl_9N(n-Pr)_3]^{-}$. Длина связи B-N составляет 1.578 Å. В соединении **45** кристаллографически независимая часть моноклинной ячейки (P2₁/c) содержит 1 катион $[Ag(PPh_3)_4]^+$ и 1 анион $[2-B_{10}Cl_9N(n-Pr)_3]^{-}$. При этом, общее строение перхлорированного аниона практически идентично своему негалогенированному аналогу. Длина связи В-N составляет 1.601 Å. Длины связей В-Cl для апикальных атомов бора лежат в диапазоне 1.778 – 1.788 Å, что заметно короче соответствующих связей для экваториальных атомов бора, лежащих в диапазоне 1.796 Å - 1.806 Å. И данные значения близки к значениям незамещенного *клозо*декаборатного аниона [B₁₀Cl₁₀]²⁻.

Рисунок 41. Строение анионов $[1-B_{10}Cl_9N(n-Pr)_3]^-$ и $[2-B_{10}Cl_9N(n-Pr)_3]^-$

по данным рентгеноструктурного анализа

Бромирование три-N,N,N-замещенных производных

клозо-декаборатного аниона

Обсуждение синтеза и данных ЯМР и ИК спектроскопии

Следующим исследуемым процессом галогенирования замещенных аммониевых производных *клозо*-декаборатного аниона являлось бромирование. Проведение реакции бромирования с использованием элементарного брома не затрагивает ипсо-позицию в борном остове и приводит только к замене всех атомов водорода в полиэдре на атомы галогена. Сам процесс проведения галогенирования представлен на схеме 36:

Схема 36. Схема бромирования три-N,N,N-замещенных производных *клозо*-декаборатного аниона

На ¹¹В ЯМР спектре (Рисунок 42) конечного продукта $(n-Bu_4N)[2-B_{10}Br_9N(n-Bu)_3]$ можно отметить несколько сигналов. Сигнал при 3.3 м.д. относится к 2 апикальным вершинам, а группа сигналов с максимумами при -5.1, -9.4, -13.8 к 8 атомам экваториального пояса.

Рисунок 42. ¹¹В ЯМР спектр (*n*-Bu₄N)[2-B₁₀Br₉N(*n*-Bu)₃]

¹Н и ¹³С ЯМР спектры соединений $(n-Bu_4N)[B_{10}Br_9NR_3]$ (R = *n*-Pr, *n*-Bu, *n*-C₈H₁₇, *n*-C₁₂H₂₅, *n*-C₁₈H₃₇) практически идентичны для своих
хлорированных аналогов. Ниже представлены ¹Н (Рисунок 43) и ¹³С ЯМР (Рисунок 44) спектры соединения $(Bu_4N)[2-B_{10}Br_9N(n-Bu)_3]$

Изменения на ИК-спектре конечного соединения (Рисунок 45) аналогичны изменениям в ИК-спектре хлорированного производного, а именно наблюдается изчезновение характеристической полосы валентных

колебаний В-Н и появление сильных полос при 1119,965 и 436 см⁻¹, которые являются характеристическими для валентных колебаний связей В-Вг.

Рисунок 45. ИК спектр (*n*-Bu₄N)[2-B₁₀Br₉N(*n*-Bu)₃]

Обсуждение данных рентгеноструктурного анализа

Строение анионов $[2-B_{10}Br_9N(n-Pr)_3]^-$ и $[2-B_{10}Br_9N(n-Bu)_3]^-$ по данным РСА монокристалла представлено на рисунке ниже (Рисунок 45). Кристаллографически независимая часть моноклинной ячейки (P2₁/c) соединения **67** содержит 1 катион $[(Ag(PPh_3)_3)_2Br]^+$ и 1 анион $[2-B_{10}Br_9N(n-Pr)_3]^-$. Длина связи B-N в анионе составляет 1.619 Å. Кристаллографически независимая часть моноклинной ячейки (P2₁/c) соединения **68** содержит 1 катион $[Bu_4N]^+$ и 1 анион $[2-B_{10}Br_9N(n-Bu)_3]^-$. Длина связи B-N в анионе составляет 1.619 Å.

Рисунок 45. Строение анионов $[2-B_{10}Br_9N(n-Pr)_3]^-$ и $[2-B_{10}Br_9N(n-Bu)_3]^-$ по данным рентгеноструктурного анализа

Таким образом, исследование процессов галогенирования ДЛЯ производных клозо-декаборатного аниона со связями B-S и B-N позволило установить, что можно получить большое число производных с различными заместителями, простейших алкильными начиная ОТ алкильных, ДО заместителей содержащих карбоксильные или фталимидные группы. Также необходимо отметить особенность протекания процесса хлорирования для три-N,N,N-замещенных производных клозо-декаборатного аниона. При использовании сульфурилхлорида наблюдается перегруппировка борного остова с перемещением ипсо-атома бора (В2) в апикальное положение. Данного эффекта не наблюдается при использовании N-хлорсукцинимида. Кроме того, высокая стерическая затрудненность около ипсо-атома в полиэдре делают процесс полного замещения для три-N,N,N-замещенных производных клозо-декаборатного аниона достаточно трудоемким. На основе чего, для изучения возможности использования полученных соединений в качестве потенциальных компонентов ионных жидкостей нами были выбраны ди-S,S-замещенные производные клозо-декаборатного аниона.

3.4. Исследование анионов [2-B₁₀X₉S(C₁₈H₃₇)₂]⁻ (X = H, Cl, Br) как потенциальных компонентов для ионных жидкостей

Для получения ионных жидкостей на основе пергалогенированных сульфониевых производных *клозо*-декаборатного аниона нами было использовано два различных подхода (Схема 37).

Первый подход заключается в следующем:

1) Получение К[2-В₁₀Н₉S(*n*-C₁₈H₃₇)₂].

Синтез данного соединения проводили путем замены цезия в исходном незамещенном сульфанил-*клозо*-декаборатном анионе на калий с помощью ион-обменной хроматографии. После чего проводили алкилирование октадецилбромидом в присутствии основания с получением конечного соединения состава K[2-B₁₀H₉S(*n*-C₁₈H₃₇)₂].

2) Галогенирование К[2-В₁₀Н₉S(*n*-C₁₈H₃₇)₂] с помощью SO₂Cl₂ или Br₂.

Замена цезия на калий повышает растворимость данного соединения в реакционной смеси (ацетонитрил и сульфурилхлорид / элементарный бром) данной стадии, которая заключается в проведении для процесса галогенирования борного остова до полной замены всех атомов водорода в нем на атомы галогенов (хлор / бром). Реакцию проводили по аналогичным выше. В качестве методикам описанным галогенирующих агентов использовались сульфурилхлорид и элементарный бром. Однако, выделение конечных соединений после галогенирования имеет определенные сложности, что связано с сольватационными возможностями щелочного металла различными органическими и неорганическими молекулами. В результате чего, для выделения конечного продукта реакционную массу после полного удаления летучих продуктов реакции на глубоком вакууме необходимо обрабатывать на ультразвуковой ванне В смеси вода/метанол/ацетонитрил в соотношении 10/5/1 с нагревом до 50°С. После чего коллоидный раствор концентрировали до минимального количества органических растворителей и осадок центрифугировали.

3) Замена щелочного металла на интересующий органический катион.

Последней стадией данной методики является замена щелочного металла на интересующий нас органический катион путем реакции метастезиса в смеси дихлорметан/вода.

Минусом данной методики является сложность с выделением соединений после реакций галогенирования, что приводит к низким выходам конечных соединений (Органический катион)[2-B₁₀X₉S(*n*-C₁₈H₃₇)₂] и обычно не превышет 70%.

Второй подход, который мы использовали для разработки методик получения ионных жидкостей на основе анионов $[2-B_{10}X_9S(n-C_{18}H_{37})_2]$ (X = H, Cl, Br), заключается в следующем:

 Получение исходного сульфониевого производного клозодекаборатного аниона с октадецилалкильным заместителем в виде цезиевой соли

Синтез цезиевой соли сульфониевого производного *клозо*декаборатного аниона проводили согласно разработанной в нашей лаборатории методике [91], и останавливаться на ее обсуждении мы не будем.

 Замена щелочного металла на интересующий органический катион путем реакции метатезиса

149

Схема 37. Методика получения ионных жидкостей на основе анионов $[2-B_{10}X_9S(C_{18}H_{37})_2]^2$ (X = H, Cl, Br)

Для замены органического катиона нами было испробовано несколько различных способов обмена. Хорошим методом оказалось растворение солей $Cs[B_{10}H_9S(n-C_{18}H_{37})_2]$ и CatHal, Cat =

1-этил-3-метилимидазолий (EMIM),

1-бутил-3-метилимидазолий (BMIM),

1-метил-3-октилимидазолий (MOIM),

гексадецилпиридиний ($C_5H_5N(CH_2)_{15}CH_3$),

тетрадодециламмоний ((С₁₂H₂₅)₄N),

тетрадецилтриметиламмоний ((С₁₂H₂₅)(CH₃)₃N),

тригексилтетрадецилфосфоний (C_6H_{13})₃($C_{14}H_{29}$)P).

строение которых представлено ниже (Рисунок 47):

Рисунок 47. Строение используемых катионов для исследования

в смеси ацетонитрил/вода для достижения лучшей однородности смеси с последующим упариванием растворителей на роторном испарителе. После чего остаток досушивали с помощью пластинчато-роторного насоса до полного удаления остатков воды. К полученной твердой массе приливали дихлорметан и обрабатывали на ультразвуковой ванне, после чего отфильтровывали от хлорида или бромида цезия, а раствор упаривали.

Анализ ¹Н ЯМР спектров (Рисунок 48) показал, что для всех полученных соединений соотношение катион/анион составляет 1/1.

3) Исчерпывающее галогенирование полученных соединений

Методика проведения галогенирования полученных соединений (Органический катион) $[2-B_{10}H_9S(n-C_{18}H_{37})_2]$ не отличается от таковой для тетрабутиламмониевых солей. Однако, для большинства синтезов, методика выделения конечных соединений не подходила. Побочным продуктом галогенирования в среде ацетонитрила является полимерный остаток из 1,3,5-триметил-1,3,5-триазациклогексан), ацетонитрила (скорей всего который в дальнейшем мешает очистке конечных соединений, повышая растворимость в таких растворителях, как диэтиловый эфир или гексан. Для решения этой проблемы полученную вязкую массу после упаривания небольшими порциями очищали с помощью флэш-хроматографии, а конечный продукт после хроматографической колонки обрабатывали на ультразвуковой ванне в воде. После чего не растворившийся остаток центрифугировали и повторяли процедуру несколько раз.

Рисунок 48. ¹Н ЯМР спектры ионных жидкостей на основе аниона [2-B₁₀Cl₉S(C₁₈H₃₇)₂]⁻

 $^{11}\mathbf{B}$ Ha ЯМР спектрах конечных соединений (Органический катион) $[2-B_{10}X_9S(n-C_{18}H_{37})_2]$ (X = Cl, Br) мы наблюдаем аналогичную картину как для исследуемых ранее пергалогенированных сульфониевых производных клозо-декаборатного аниона. Кроме того, по данным ¹Н и ¹³С ЯМР спектроскопии, в реакцию галогенирования при данных условиях не вступают ни один катион из исследуемых образцов. Общая тенденция изменений спектров соединений после полного галогенирования наблюдается только для аниона. В ¹Н ЯМР спектрах сигнал от протонов α-метиленовых групп алкильного заместителя в сравнении с исходными негалогенированными соединениями смещается в слабое поле на 0.7 м.д. для хлорированных, и на 0.9 м.д. для бромированных. Тогда как в ¹³С – сигнал от α-метиленовых групп смещается в сильное поле больше чем на 2 м.д.

Для полученных соединений, которые бы быть всех могли использованы в качестве ионных жидкостей, была измерена температура плавления. На основании анализа было установлено, что галогенирование борного остова во всех случаях приводит к понижению температуры плавления конечных соединений. При использовании имидазолевых BMIM. катионов (EMIM, MOIM) c анионами $[2-B_{10}X_9S(n-C_{18}H_{37})_2]^{-}$ наблюдается снижение температуры плавления с 83°С для ЕМІМ до 60°С для МОІМ. Тогда как для галогенированных данные значения составляют 74°C и 54°C соответственно. Аналогичная картина наблюдается и для ряда соединений на основе аммониевых катионов. Единственными соединениями, которые находятся в жидком состоянии при являются комнатной температуре $(25^{\circ}C)$ $(C_6H_{13})_3(C_{14}H_{25})P.$ соли с Температура плавления соединений ((C_6H_{13})₃($C_{14}H_{25}$)P)[2- $B_{10}X_9S(n-C_{18}H_{37})_2$] (X = H, Cl, Br) находится в диапозоне от 8°C до 25°C.

выводы

1. Разработаны методы полного галогенирования диалкил-И сульфониевых [B₁₀H₉SR₂]⁻ и триалкилзамещенных диарилзамещенных производных клозо-декаборатного аммониевых $[B_{10}H_9NR_3]^{-1}$ аниона С выходами 80-90% взаимодействием высокими исходных негалогенированных производных с SO_2Cl_2 , NCS, Br₂.

Разработан 2. метод синтеза пергалогенированных производных сульфанил-клозо-декаборатного аниона $[B_{10}X_9SH]^{2-}$ (X = Cl, Br) путем галогенирования исходных солей $[B_{10}H_9SC(NMe_2)_2]^-$ с последующим их гидролизом. При этом, установлено, что полная замена атомов водорода в кластере на галогены приводит к снижению нуклеофильности по атому серы в результате чего последующее их алкилирование по атому серы приводит к образованию исключительно моноалкил-И моноарилсульфониевых замещенных пергалогенированных производных клозо-декаборатного аниона $[2-B_{10}X_9SR]^{2-}$ (X = Cl, Br).

3. Установлено, что использование сульфурилхлорида SO_2Cl_2 при хлорировании три-N,N,N-замещенных производных *клозо*-декаборатного аниона $[2-B_{10}H_9NR_3]^-$ с алкильными заместителями приводит к перегруппировке борного остова с переносом замещенной позиции из экваториального положения в апикальное с образованием $[1-B_{10}Cl_9NR_3]^-$.

4. Установлено, что стерическая затрудненность позиций борного остова у *unco*-атома в ди-S,S-замещенных сульфониевых $[B_{10}X_9SR_2]^-$ и три-N,N,Nзамещенных аммониевых $[B_{10}X_9NR_3]^-$ производных *клозо*-декаборатного аниона увеличивает время протекания процесса их галогенирования. Например, полное хлорирование триалкилзамещенных аммониевых производных может быть завершено только при использовании УФоблучения и увеличении общего времени протекания реакции до нескольких суток.

5. Установлено, что увеличение длины алкильной цепи R при атоме серы в анионе $[B_{10}X_9SR_2]^-$ (X = H, Cl, Br) с одновременной полной заменой *экзо*-

полиэдрических атомов водорода в борном остове на галогены приводит к понижению температуры плавления солей полученных анионов вплоть до комнатной. Это позволяет рассматривать соли анионов $[2-B_{10}X_9S(C_{18}H_{37})_2]^{-}$ (X = H, Cl, Br) с такими катионами, как: 1-этил-1-бутил-3-метилимидазолий, Зметилимидазолий, 1-метил-3- $C_5H_5N(CH_2)_{15}CH_3$, $(C_{12}H_{25})_4N$, октилимидазолий, $(C_{12}H_{25})N(CH_3)_3$, (С₆H₁₃)₃P(С₁₄H₂₉), в качестве перспективных компонентов ионных жидкостей.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- WCA слабо-координирующие анионы
- NCS N-хлорсукцинимид
- Ме метил
- Et этил
- *n*-Pr н-пропил
- i-Pr изо-пропил
- *п*-Ви н-бутил
- Ph фенил
- СD₃CN ацетонитрил-d3
- (CD₃)₂CO ацетон-d6
- DMSO-d6 диметилсульфоксид
- DMF-d7 диметилформамид
- ЯМР ядерно-магнитный резонанс
- ИК инфракрасная спектроскопия
- РСА рентгеноструктурный анализ
- EMIM 1-этил-3-метилимидазолий
- BMIM 1-бутил-3-метилимидазолий
- МОІМ 1-метил-3-октилимидазолий

СПИСОК ЛИТЕРАТУРЫ

- Rosenthal M.R. The myth of the non-coordinating anion // J. Chem. Educ. 1973. Vol. 50, № 5. P. 331–335.
- Strauss S.H. The Search for Larger and More Weakly Coordinating Anions // Chem. Rev. 1993. Vol. 93, № 3. P. 927–942.
- Knapp C. Weakly Coordinating Anions: Halogenated Borates and Dodecaborates // Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications. Elsevier Ltd., 2013. Vol. 1. 651–679 p.
- 4. Knoth W.H. et al. Chemistry of Boranes. IX. Halogenation of $B_{10}H_{10}^{-2}$ and $B_{12}H_{12}^{-2}$ // Inorg. Chem. 1964. Vol. 3, No 2. P. 159–167.
- Reed C.A. H⁺, CH₃⁺, and R₃Si⁺ carborane reagents: When triflates fail // Acc. Chem. Res. 2010. Vol. 43, № 1. P. 121–128.
- Kim K.C. et al. Et₂Al⁺ alumenium ion-like chemistry. Synthesis and reactivity toward alkenes and alkene oxides // J. Am. Chem. Soc. 2002. Vol. 124, № 26. P. 7662–7663.
- Sivaev I.B., Prikaznov A. V., Naoufal D. Fifty years of the *closo*-decaborate anion chemistry // Collect. Czechoslov. Chem. Commun. 2010. Vol. 75, № 11. P. 1149–1199.
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. Derivatives of *closo*decaborate anion [B₁₀H₁₀]²⁻ with exo-polyhedral substituents // Russ. J. Inorg. Chem. 2010. Vol. 55, № 14. P. 2089–2127.
- Kubasov A.S. et al. Synthesis and stability studies of derivatives of the 2sulfanyl-*closo*-decaborate anion [2-B₁₀H₉SH]²⁻ // Inorganica Chim. Acta. Elsevier B.V., 2018. Vol. 477. P. 277–283.
- Zhou N. et al. Investigations on a series of novel ionic liquids containing the [*closo*-B₁₂Cl₁₂]²⁻ dianion // RSC Adv. 2012. Vol. 2, № 26. P. 9830.
- Sivaev I.B. Nitrogen heterocyclic salts of polyhedral borane anions: From ionic liquids to energetic materials // Chem. Heterocycl. Compd. 2017. Vol. 53, № 6–7. P. 638–658.
- 12. Jenne C., Kirsch C. Alkoxy substituted halogenated *closo*-dodecaborates as

anions for ionic liquids // Dalt. Trans. Royal Society of Chemistry, 2015. Vol. 44, № 29. P. 13119–13124.

- 13. Zhang Y., Liu J., Duttwyler S. Synthesis and Structural Characterization of Ammonio/Hydroxo Undecachloro-*closo*-Dodecaborates [B₁₂Cl₁₁NH₃]⁻ /[B₁₂Cl₁₁OH]²⁻ and Their Derivatives // Eur. J. Inorg. Chem. 2015. Vol. 2015, № 31. P. 5158–5162.
- Bolli C. et al. Halogenated *closo*-Dodecaborate Anions Stabilize Weakly Bound [(Me₃NH)₃X]²⁺ (X = Cl, Br) Dications in the Solid State // Eur. J. Inorg. Chem. 2017. Vol. 2017, № 38. P. 4552–4558.
- 15. Matveev E.Y. et al. Reactions of the [B₁₀H₁₀]²⁻ anion with nucleophiles in the presence of halides of group IIIA and IVB elements // Russ. J. Inorg. Chem. 2015. Vol. 60, № 7. P. 776–785.
- Frank R. et al. Electrophile-induced nucleophilic substitution of the nidodicarbaundecaborate anion nido-7,8-C₂B₉H₁₂ by conjugated heterodienes // Chem. - A Eur. J. 2014. Vol. 20, № 5. P. 1440–1446.
- Hamilton E.J.M. et al. Unusual Cationic Tris(Dimethylsulfide)-Substituted *closo*-Boranes: Preparation and Characterization of [1,7,9-(Me₂S)₃-B₁₂H₉]BF₄ and [1,2,10-(Me₂S)₃-B₁₀H₇]BF₄ // Inorg. Chem. 2012. Vol. 51. P. 2374–2380.
- Berkeley E.R. et al. Synthesis, Structural Characterization, and Reactivity Studies of 5-CF₃SO₃-B₁₀H₁₃ // Inorg. Chem. 2014. Vol. 53. P. 5348–5358.
- Oligomers D. et al. S-Alkylation and S-Amination of Methyl Thioethers // Society. 2002. Vol. 124, № 11. P. 1291–1294.
- Wright J., Kaczmarczyk A. Direct Synthesis of Dialkyl Sulfide Derivatives of sulfonium ion and its subsequent rearrangement to the Dodecahydrododecaborate(2-), B₁₂H₁₂²⁻ // Inorg. Chem. 1973. Vol. 12, № 6. P. 1972–1973.
- Knoth W.H. Chemistry of Boranes. XXW.' Inner Diazonium Salts. 1965.
 Vol. 6, № 1960. P. 935–939.
- 22. Jankowiak A. et al. $[Closo-B_{10}H_{10}]^{2-}$ as a structural element for quadrupolar

liquid crystals: A new class of liquid crystalline NLO chromophores // J. Mater. Chem. C. 2013. Vol. 1, № 6. P. 1144–1159.

- 23. Komura M., Nakai H., Shiro M. Regioselective Synthesis of [1-B₁₀H₉(SH)]²⁻ and [2-B₁₀H₉(SH)]²⁻: Potential Agents for Boron-Neutron Capture Therapy of Brain Tumours // J. Chem. Soc. Dalt. Trans. 1987. P. 1953–1956.
- Kubasov A.S. et al. The method for synthesis of 2-sulfanyl *closo*-decaborate anion and its S-alkyl and S-acyl derivatives // J. Organomet. Chem. Elsevier B.V, 2017. Vol. 828. P. 106–115.
- 25. Nagasawa K., Narisada M. SYNTHESIS OF POLYHEDRAL BORANE DERIVATIVES HAVING A CARBOXY GROUP // Tetrahedron Lett. 1990. Vol. 31, № 28. P. 4029–4032.
- Swenson D.H., Laster B.H., Metzger R.L. Synthesis and evaluation of a boronated nitroimidazole for boron neutron capture therapy // J. Med. Chem. 1996. Vol. 39, № 7. P. 1540–1544.
- Cabel D. et al. Synthesis of SAlkyl and SAcyl Derivatives of Mercaptoundecahydrododecaborate, a Possible Boron Carrier for Neutron Capture Therapy // Inorg. Chem. 1993. Vol. 32. P. 2276–2278.
- 28. Raasch W.R.H. and M.S. Chemistry of Boranes. XIV. Amination of $B_{10}H_{10}^{-2}$ and $B_{12}H_{12}^{-2}$ with Hydroxylamine-O-sulfonic Acid // J. Am. Chem. Soc. 1964. Vol. 86, No 18. P. 3661–3668.
- Mindich A.L. et al. Coupling of azomethine ylides with nitrilium derivatives of *closo*-decaborate clusters: A synthetic and theoretical study // Chempluschem. 2012. Vol. 77, № 12. P. 1075–1086.
- Justus E., Vöge A., Gabel D. N-alkylation of ammonioundecahydro-*closo*dodecaborate(1-) for the preparation of anions for ionic liquids // Eur. J. Inorg. Chem. 2008. № 33. P. 5245–5250.
- Zhao X. et al. Progress in three-dimensional aromatic-like *closo*dodecaborate // Coord. Chem. Rev. Elsevier B.V., 2021. Vol. 444. P. 214042.
- Ali F., S Hosmane N., Zhu Y. Boron Chemistry for Medical Applications // Molecules. 2020. Vol. 25, № 4. P. 1–24.

- 33. Matveev E.Y. et al. Cleavage of the cyclic substituent in the [B₁₀H₉O₂C₄H₈]⁻, [B₁₀H₉OC₄H₈]⁻, and [B₁₀H₉OC₅H₁₀]⁻ anions upon the interaction with negatively charged N-nucleophiles // Russ. J. Inorg. Chem. 2011. Vol. 56, № 10. P. 1549–1554.
- Sivaev I.B., Bregadze V.I. Lewis acidity of boron compounds // Coord. Chem. Rev. Elsevier B.V., 2014. Vol. 270–271, № 1. P. 75–88.
- 35. Peymann T., Knobler C.B., Frederick Hawthorne M. A study of the sequential acid-catalyzed hydroxylation of dodecahydro-*closo*dodecaborate(2-) // Inorg. Chem. 2000. Vol. 39, № 6. P. 1163–1170.
- Prikaznov A. V. et al. Synthesis of alkoxy derivatives of decahydro-*closo*decaborate anion // Collect. Czechoslov. Chem. Commun. 2007. Vol. 72, № 12. P. 1689–1696.
- Bragin V.I. et al. Synthesis of the 1-hydroxy-*closo*-decaborate anion [1-B₁₀H₉OH]²⁻ // J. Organomet. Chem. 2005. Vol. 690, № 11. P. 2847–2849.
- Bayer M.J., Hawthorne M.F. An Improved Method for the Synthesis of [*closo*-B₁₂(OH)₁₂]⁻² // Inorg. Chem. 2004. Vol. 43. P. 2018–2020.
- Peymann T., Lurk E., Gabel D. Hydroxoundecahydro-*closo*-dodecaborate(2-) as a Nucleophile. Preparation and Structural Characterization of O-Alkyl and O-Acyl Derivatives of Hydroxoundecahydro-*closo*-dodecaborate(2-) // Inorg. Chem. 1996. Vol. 35, № 5. P. 1355–1360.
- Sivaev I.B. et al. Synthesis of Alkoxy Derivatives of Dodecahydro-*closo*dodecaborate Anion [B₁₂H₁₂]²⁻ // Tetrahedron Lett. 1999. Vol. 40. P. 3451– 3454.
- Goswami L.N. et al. CRGD peptide-conjugated icosahedral *closo*-B₁₂²⁻ core carrying multiple Gd³⁺-DOTA chelates for αvβ 3 integrin-targeted tumor imaging (MRI) // Inorg. Chem. 2013. Vol. 52, № 4. P. 1701–1709.
- 42. Goswami L.N. et al. Synthesis of vertex-differentiated icosahedral *closo* boranes: Polyfunctional scaffolds for targeted drug delivery // J. Org. Chem. 2012. Vol. 77, № 24. P. 11333–11338.
- 43. Sivaev I.B. et al. Synthesis of oxonium derivatives of the dodecahydro-closo-

dodecaborate anion $[B_{12}H_{12}]^{2}$. Tetramethylene oxonium derivative of $[B_{12}H_{12}]^{2}$ as a convenient precursor for the synthesis of functional compounds for boron neutron capture therapy // Polyhedron. 2000. Vol. 19. P. 627–632.

- 44. Knoth W.H. et al. Derivative Chemistry of $B_{10}H_{10}^-$ and $B_{12}H_{12}^-$ // J. Am. Chem. Soc. 1962. Vol. 84, No 6. P. 1056–1057.
- 45. Solntsev, K. A.; Mebel, A. M.; Votinova, N. A.; Kuznetsov, N. T.; Charkin O.P. Polyhedral anion B₁₂H₁₂²⁻ as spatial-aromatic system // Koord. Khim. 1992. Vol. 18. P. 340–364.
- 46. Ivanov S. V. et al. Synthesis and characterization of ammonioundecafluorocloso-dodecaborates(1-). New superweak anions // Inorg. Chem. 2003. Vol. 42, № 15. P. 4489–4491.
- 47. Peryshkov D. V., Popov A.A., Strauss S.H. Direct perfluorination of K₂B₁₂H₁₂ in acetonitrile occurs at the gas bubble-solution interface and is inhibited by HF. Experimental and DFT study of inhibition by protic acids and soft, polarizable anions // J. Am. Chem. Soc. 2009. Vol. 131, № 51. P. 18393–18403.
- 48. Geis V. et al. Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B₁₂Cl₁₂]²⁻ // J. Chem. Soc. Dalt. Trans. 2009. № 15. P. 2687–2694.
- 49. Weixing Gu and Oleg V. Ozerov. Exhaustive Chlorination of $[B_{12}H_{12}]^{2-}$ without Chlorine Gas and the Use of $[B_{12}Cl_{12}]^{2-}$ as a Supporting Anion in Catalytic Hydrodefluorination of Aliphatic C-F Bonds // Inorg. Chem. 2011. Vol. 50. P. 2726–2728.
- 50. Gu W. et al. Improved methods for the halogenation of the [HCB₁₁H₁₁]⁻ anion // Chem. Commun. 2010. Vol. 46, № 16. P. 2820–2822.
- Ivanov S. V. et al. Regioselective Fluorination of CB₁₁H₁₂⁻. New Weakly Coordinating Anions // Inorg. Chem. 1995. Vol. 34, № 26. P. 6419–6420.
- 52. Ivanov S. V. et al. Reactions of $CB_9H_{10}^-$ with Electrophiles, Including the Regioselective Mono- And Dihalogenation of the Lower Belt // Inorg. Chem.

1996. Vol. 35, № 26. P. 7882–7891.

- Ivanov S. V. et al. Highly Fluorinated Weakly Coordinating Monocarborane Anions. 1-H-CB₁₁F₁₁, 1-CH₃-CB₁₁F₁₁, and the Structure of [N(n-Bu)₄]₂[CuCl(CB₁₁F₁₁)] // J. Am. Ceram. Soc. 1998. Vol. 120. P. 4224–4225.
- Korbe S., Schreiber P.J., Michl J. Chemistry of the Carba-closododecaborate(-) Anion, CB₁₁H₁₂⁻ // Chem. Rev. 2006. Vol. 106. P. 5208– 5249.
- 55. Janoušek Z. et al. C-halogenation of the *closo*-[CB₁₁H₁₂]⁻ anion // Collect.
 Czechoslov. Chem. Commun. 2002. Vol. 67, № 7. P. 1025–1034.
- 56. Pluntze A.M. et al. Deca-B-fluorination of diammonioboranes. Structures and NMR characterization of 1,2-, 1,7-, and 1,12-B₁₂H₁₀(NH₃)₂ and 1,2-, 1,7-, and 1,12-B₁₂F₁₀(NH₃)₂ // J. Fluor. Chem. Elsevier, 2018. Vol. 209, № December 2017. P. 33–42.
- 57. Bolli C. et al. Synthesis and Properties of the Weakly Coordinating Anion [Me₃NB₁₂Cl₁₁]⁻ // Chem. A Eur. J. 2014. Vol. 20, № 42. P. 13783–13792.
- Saleh M., Powell D.R., Wehmschulte R.J. Chlorination of 1-Carba-*closo*dodecaborate and 1-Ammonio-*closo*-dodecaborate Anions // Inorg. Chem. 2016. Vol. 55, № 20. P. 10617–10627.
- 59. Holub J. et al. Polyhalogenated Decaborate and 1-Ammoniododecaborate Ions: An Improved Synthesis with Elemental Halogens, and Physicochemical and Chemical Properties // Eur. J. Inorg. Chem. 2017. Vol. 2017, № 38. P. 4499–4509.
- El Anwar S. et al. Synthesis and selected properties of nonahalogenated 2ammonio-decaborate anions and their derivatives substituted at N-centre // J. Organomet. Chem. Elsevier B.V., 2018. Vol. 865. P. 189–199.
- 61. El Anwar S. et al. Versatile, one-pot introduction of nonahalogenated 2-ammonio-decaborate ions as boron cluster scaffolds into organic molecules; host-guest complexation with γ-cyclodextrin // Chem. Commun. 2019. Vol. 55, № 91. P. 13669–13672.
- 62. Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and

Catalysis Thomas // Chem. Rev. 1999. Vol. 99. P. 2071–2083.

- Carlin R.T., Wilkes J.S. Chemistry of Nonaqueous Solutions / ed. Mamantov
 G., Popov A.I. New York: VCH Publishers, 1994. 277–306 p.
- 64. Canongia Lopes J.N.A., Pádua A.A.H. Nanostructural organization in ionic liquids // J. Phys. Chem. B. 2006. Vol. 110, № 7. P. 3330–3335.
- 65. Tokuda H. et al. Physicochemical properties and structures of room temperature ionic liquids. 2. variation of alkyl chain length in imidazolium cation // J. Phys. Chem. B. 2005. Vol. 109, № 13. P. 6103–6110.
- Pádua A.A.H., Costa Gomes M.F., Canongia Lopes J.N.A. Molecular solutes in ionic liquids: A structural perspective // Acc. Chem. Res. 2007. Vol. 40, № 11. P. 1087–1096.
- 67. Markiewicz R. et al. Influence of alkyl chain length on thermal properties, structure, and self-diffusion coefficients of alkyltriethylammonium-based ionic liquids // Int. J. Mol. Sci. 2021. Vol. 22, № 11.
- 68. Earle M.J. et al. The distillation and volatility of ionic liquids // Nature. 2006.
 Vol. 439, № 7078. P. 831–834.
- Zhao H. Methods for stabilizing and activating enzymes in ionic liquids A review // J. Chem. Technol. Biotechnol. 2010. Vol. 85, № 7. P. 891–907.
- 70. Huddleston J.G. et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation // Green Chem. 2001. Vol. 3, № 4. P. 156–164.
- 71. Park S., Kazlauskas R.J. Biocatalysis in ionic liquids Advantages beyond green technology // Curr. Opin. Biotechnol. 2003. Vol. 14, № 4. P. 432–437.
- Martínez-Palou R. Microwave-assisted synthesis using ionic liquids // Mol. Divers. 2010. Vol. 14, № 1. P. 3–25.
- 73. Steinrück H.P., Wasserscheid P. Ionic liquids in catalysis // Catal. Letters.
 2015. Vol. 145, № 1. P. 380–397.
- 74. Fujita K. et al. Ionic liquids designed for advanced applications in bioelectrochemistry // RSC Adv. 2012. Vol. 2, № 10. P. 4018–4030.
- 75. Singh V. V. et al. Applications of Ionic Liquids in Electrochemical Sensors

and Biosensors // Int. J. Electrochem. 2012. Vol. 2012, № Figure 1. P. 1–19.

- 76. El Abedin S.Z. et al. Ionic liquids as green electrolytes for the electrodeposition of nanomaterials // Green Chem. 2007. Vol. 9, № 6. P. 549–555.
- 77. Vidal L., Riekkola M.L., Canals A. Ionic liquid-modified materials for solidphase extraction and separation: A review // Anal. Chim. Acta. Elsevier B.V., 2012. Vol. 715. P. 19–41.
- Sun X., Luo H., Dai S. Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle // Chem. Rev. 2012. Vol. 112, № 4. P. 2100–2128.
- 79. Ding J., Welton T., Armstrong D.W. Chiral ionic liquids as stationary phases in gas chromatography // Anal. Chem. 2004. Vol. 76, № 22. P. 6819–6822.
- 80. Larsen A.S. et al. Designing ionic liquids: Imidazolium melts with inert carborane anions // J. Am. Chem. Soc. 2000. Vol. 122, № 30. P. 7264–7272.
- 81. Wang J. et al. Group 4 metallacarboranes of constrained geometries derived from B(cage)- and cage)-silylamido-substituted carborane ligands: A synthetic and structural investigation // J. Organomet. Chem. 2003. Vol. 680, № 1–2. P. 173–181.
- 82. Green M.D., Long T.E. Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies // Polym. Rev. 2009. Vol. 49, № 4. P. 291–314.
- 83. Apex3 S. Bruker (2018). Bruker AXS Inc.: Madison (WI), USA.
- 84. Krause L. et al. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination // J. Appl. Crystallogr. International Union of Crystallography, 2015. Vol. 48, № 1. P. 3–10.
- Sheldrick G.M. Crystal structure refinement with SHELXL // Acta Crystallogr. Sect. C Struct. Chem. International Union of Crystallography, 2015. Vol. 71, № Md. P. 3–8.
- 86. Dolomanov O. V. et al. OLEX2: A complete structure solution, refinement and analysis program // J. Appl. Crystallogr. International Union of

Crystallography, 2009. Vol. 42, № 2. P. 339–341.

- Kubasov A.S. et al. The method for synthesis of 2-sulfonium *closo*decaborate anions derivatives with exo-polyhedral aminogroups // Inorganica Chim. Acta. Elsevier, 2020. Vol. 507, № March. P. 119589.
- Kubasov A.S. et al. Synthesis, structures, DFT calculations, and Hirshfeld surface analysis of sulfonium derivatives of the *closo*-decaborate anion [B₁₀X₉-*cyclo*-S(CH₂)₄]⁻ and [B₁₀X₉-*cyclo*-S(CH₂)₂O]⁻ (X = H, Cl, Br) // J. Mol. Struct. Elsevier B.V., 2021. Vol. 1241. P. 130591.
- 89. Golubev A. V. et al. Perbrominated Sulfonium-Substituted *closo*-Decaborates with exo-Polyhedral Amino Groups [2-B₁₀Br₉S((CH₂)_nNH₂)₂]⁻ (n = 1-3) // Russ. J. Inorg. Chem. 2020. Vol. 65, № 9. P. 1333–1342.
- 90. Golubev A. V. et al. Synthesis of Perchlorinated Sulfonium Derivatives of *closo* Decaborate Anion [2-B₁₀Cl₉SR₂]⁻ (R = i-C₃H₇, n-C₃H₇, n-C₄H₉, n-C₈H₁₇, n-C₁₂H₂₅, n-C₁₈H₃₇,CH₂Ph, and cyclo-S(CH₂)₄) // Inorg. Chem. 2021. Vol. 60, № 12. P. 8592–8604.
- 91. Kubasov A.S. et al. Sulfonium *closo*-hydridodecaborate anions as active components of a potentiometric membrane sensor for lidocaine hydrochloride // Inorganica Chim. Acta. Elsevier, 2021. Vol. 514, № June 2020. P. 119992.

для перхлорированных сульфониевых производных

Название соединения	(Bu ₄ N)[2-B ₁₀ Cl ₉ S(i-Pr) ₂]	(Bu ₄ N)[2-B ₁₀ Cl ₉ S(n-Pr) ₂]	(Bu ₄ N)[2-B ₁₀ Cl ₉ S(CH ₂ Ph) ₂] *2MeCN	(Bu ₄ N) [2-B ₁₀ Cl ₉ -cyclo-S(CH ₂) ₄]	$(Bu_4N)[2\text{-}B_{10}Cl_9S(Pr\text{-}Pht)_2]$
Брутто-формула	C22H50B10Cl9NS	C22H50B10Cl9NS	$C_{34}H_{56}B_{10}Cl_9N_3S$	C20H44B10Cl9NS	$C_{40}H_{50}B_{10}Cl_9SN_{0.5}O_{0.5}$
Молекулярная масса	787,89	787,84	966,225	757,77	1005,01
Температура/К	296,15	296	296	296	296
Сингония	monoclinic	triclinic	triclinic	triclinic	triclinic
Пространственная группа	C2/c	P-1	P-1	P-1	P-1
a/Å	80.813(2)	12.4414(4)	12.083(2)	12,147	12.3454(5)
b/Å	12.3592(4)	12.4833(3)	12.845(2)	12,514	12.4756(5)
c/Å	55.5147(15)	14.4736(4)	16.576(3)	15,177	22.0778(9)
α/°	90	110.7850(10)	83.082(6)	106,08	80.395(2)
β/°	102.097(3)	90.9070(10)	89.443(6)	93,97	89.953(2)
γ/°	90	106.7690(10)	79.991(6)	118,98	60.9440(10)
Объем ячейки/Å ³	54216(3)	1994.60(10)	2515.0(8)	1881,6	2918.0(2)
Z	56	2	2	2	2
$\rho_{calc}g/cm^3$	1,351	1,312	1,276	1,337	1,144
μ/mm ⁻¹	6,584	0,702	0,572	0,742	0,495
F(000)	22849	816	1003,1	780	1033
Размеры кристалла/mm ³	0.4 imes 0.4 imes 0.2	0.7 imes 0.5 imes 0.2	0.4 imes 0.4 imes 0.2	0.6 imes 0.4 imes 0.2	0.7 imes 0.5 imes 0.05
Излучение	$CuK\alpha (\lambda = 1.54178)$	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
20 диапазон для сбора данных/°	2.236 to 144.458	4.176 to 63.168	4.2 to 52	3.998 to 60.986	3.758 to 54.998
Диапазоны индексов	$\begin{array}{c} -96 \leq h \leq 98, -15 \leq k \leq 14, - \\ 68 \leq l \leq 67 \end{array}$	$-17 \le h \le 18, -18 \le k \le 17, -21 \le 1 \le 21$	$-16 \le h \le 16, -11 \le k \le 16, -22 \le 1 \le 22$	$\begin{array}{c} -17 \leq h \leq 17, -16 \leq k \leq 17, - \\ 21 \leq l \leq 19 \end{array}$	$ \begin{array}{c} -15 \leq h \leq 16, -16 \leq k \leq 16, - \\ 28 \leq l \leq 28 \end{array} $
Собранно отражений	305162	44718	21641	24595	43567
Независимые отражения	51724 [$R_{int} = 0.1301$, $R_{sigma} = 0.1012$]	12696 [$R_{int} = 0.0278$, $R_{sigma} = 0.0316$]	9684 [$R_{int} = 0.0407$, $R_{sigma} = 0.0972$]	11213 [$R_{int} = 0.0203$, $R_{sigma} = 0.0329$]	13298 [$R_{int} = 0.0484$, $R_{sigma} = 0.0517$]
данные/ограничения/параметры	51724/28/2806	12696/6/435	9684/0/520	11213/0/381	13298/0/590
GooF on F ²	1,026	1,119	0,972	1,015	1,045
Финальные индексы R [I>=2σ (I)]	$R_1 = 0.0887, wR_2 = 0.2014$	$R_1 = 0.0587, wR_2 = 0.1209$	$R_1 = 0.0524, wR_2 = 0.1357$	$R_1 = 0.0446, WR_2 = 0.1051$	$R_1 = 0.0617, wR_2 = 0.1825$
Финальные индексы R [все данные]	$R_1 = 0.1657, wR_2 = 0.2537$	$R_1 = 0.0887, WR_2 = 0.1385$	$R_1 = 0.1154, WR_2 = 0.1665$	$R_1 = 0.0653, wR_2 = 0.1155$	$R_1 = 0.0958, wR_2 = 0.2068$

Приложение	1. Данные	рентгенострукт	урного анализа
------------	-----------	----------------	----------------

		2 1	1 1	
Название соединения	(Bu ₄ N) [2-B ₁₀ Cl ₉ S(CH ₂ COOEt) ₂]	(Bu ₄ N)[2- B ₁₀ Cl ₉ SC(NMe ₂) ₂]	(Bu ₄ N) [2-B ₁₀ Cl ₉ -cyclo-S(CH ₂) ₄ O]	$\begin{array}{c} (Bu_4N)_2[2\hbox{-}B_{10}Cl_9\hbox{-}cyclo-\\ S(CH_2CH_2)_2S\hbox{-}B_{10}Cl_9] \end{array}$
Брутто-формула	$C_{24}H_{50}B_{10}Cl_9NO_4S$	$C_{21}H_{48}B_{10}Cl_9N_3S$	$C_{20}H_{44}B_{10}Cl_9NOS$	$C_{36}H_{80}B_{20}Cl_{18}N_2S_2$
Молекулярная масса	875,86	801,83	773,77	1459,44
Температура/К	296	296,15	296	150
Сингония	monoclinic	orthorhombic	triclinic	monoclinic
Пространственная группа	C2/m	Pna2 ₁	P-1	C2/m
a/Å	21.000(2)	27.980(3)	12.0793(11)	21.251(14)
b/Å	12.7290(13)	12.5659(13)	12.1161(11)	12.328(7)
c/Å	16.4561(16)	12.5329(13)	16.0960(14)	17.416(13)
α/°	90	90	95.998(3)	90
β/°	91.559(3)	90	107.020(3)	107.05(3)
γ/°	90	90	117.280(3)	90
Объем ячейки/ $Å^3$	4397.3(8)	4406.5(8)	1921.4(3)	4362(5)
Z	4	4	2	2
$ ho_{calc}g/cm^3$	1,323	1,209	1,337	1,111
μ/mm^{-1}	0,651	0,638	0,73	0,637
F(000)	1808	1656	796	1496
Размеры кристалла/mm ³	0.7 imes 0.7 imes 0.1	0.5 imes 0.4 imes 0.2	0.4 imes 0.2 imes 0.1	0.6 imes 0.2 imes 0.2
Излучение	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2⊖ диапазон для сбора данных/°	3.742 to 49.998	3.242 to 49.998	3.94 to 49.998	3.864 to 50
Диапазоны индексов	$\begin{array}{c} -22 \leq h \leq 24, -15 \leq k \leq 14, - \\ 18 \leq l \leq 19 \end{array}$	$-31 \le h \le 30, -10 \le k \le 14, -14 \le 1 \le 14$	$-14 \le h \le 14, -14 \le k \le 14, -19 \le l \le 19$	$\begin{array}{c} -25 \leq h \leq 22, -14 \leq k \leq 14, - \\ 17 \leq l \leq 20 \end{array}$
Собранно отражений	11762	21258	24147	10742
Независимые отражения	$4063 [R_{int} = 0.0621, R_{sigma} = 0.0874]$	7380 [$R_{int} = 0.0960$, $R_{sigma} = 0.1197$]	$6593 [R_{int} = 0.0575, R_{sigma} = 0.0628]$	$3989 [R_{int} = 0.0525, R_{sigma} = 0.0716]$
данные/ограничения/параметры	4063/20/283	7380/5/371	6593/36/432	3989/29/225
GooF on F ²	0,977	1,053	1,057	1,024
Финальные индексы R [I>=2σ (I)]	$R_1 = \overline{0.0801}, wR_2 = 0.2368$	$R_1 = 0.0934, wR_2 = 0.2347$	$R_1 = 0.0947, wR_2 = 0.2534$	$R_1 = 0.0686, wR_2 = 0.1959$
Финальные индексы R [все данные]	$R_1 = 0.1730, wR_2 = 0.2920$	$R_1 = 0.1534, wR_2 = 0.2718$	$R_1 = 0.1287, wR_2 = 0.2688$	$R_1 = 0.1123, wR_2 = 0.2207$

для перхлорированных сульфониевых производных

Название соединения	(Bu ₄ N)[2-B ₁₀ Br ₉ S(i-Pr) ₂]	$(Bu_4N)[2-B_{10}Br_9S(n-Pr)_2]$	$(Bu_4N)[2-B_{10}Br_9S(n-Bu)_2]$	(Bu ₄ N) [2-B ₁₀ Br ₉ S(n-C ₁₂ H ₂₅) ₂]	(Bu ₄ N) [2-B ₁₀ Br ₉ S(n-C ₁₈ H ₃₇) ₂]
Брутто-формула	C22H47B10Br9NS	C22H50B10Br9NS	$C_{24}H_{50}B_{10}Br_9SN_{0.5}$	$C_{40}H_{88}B_{10}Br_9NS$	$C_{52}H_{110}B_{10}Br_9NSO_{0.5}$
Молекулярная масса	1184,95	1187,98	1204,99	1442,46	1616,75
Температура/К	296,15	296	100	100	100
Сингония	triclinic	triclinic	triclinic	monoclinic	triclinic
Пространственная группа	P-1	P-1	P-1	P2 ₁ /c	P-1
a/Å	12.3314(8)	12.6658(3)	12.6289(8)	18.1779(6)	12.1587(3)
b/Å	12.8511(8)	12.8233(4)	12.7015(7)	12.7161(4)	12.3026(3)
c/Å	16.1993(10)	14.4929(4)	15.0571(9)	26.3463(10)	28.3917(7)
α/°	70.880(2)	91.3600(10)	90.755(2)	90	80.7610(10)
β/°	73.950(2)	109.3590(10)	111.322(2)	101.5690(10)	80.1370(10)
γ/°	62.054(2)	107.6790(10)	106.796(2)	90	62.6950(10)
Объем ячейки/Å ³	2119.3(2)	2095.57(10)	2134.9(2)	5966.3(4)	3701.62(16)
Z	2	2	2	4	2
$\rho_{calc}g/cm^3$	1,857	1,883	1,874	1,606	1,451
µ/mm ⁻¹	8,578	8,676	8,517	6,11	4,933
F(000)	1134	1140	1157	2864	1628
Размеры кристалла/mm ³	$0.6 \times 0.6 \times 0.05$	0.4 imes 0.3 imes 0.03	0.45 imes 0.2 imes 0.1	0.5 imes 0.4 imes 0.02	0.4 imes 0.2 imes 0.05
Излучение	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
20 диапазон для сбора данных/°	3.69 to 50.63	4.82 to 55.64	4.468 to 55.992	3.58 to 52	3.742 to 52
Диапазоны индексов	$-12 \le h \le 14, -15 \le k \le 15, -19 \le 1 \le 19$	$-16 \le h \le 16, -12 \le k \le 16, -15 \le l \le 18$	$-16 \le h \le 16, -16 \le k \le 16, -19 \le 1 \le 19$	$-21 \le h \le 22, -15 \le k \le 15, -32 \le 1 \le 32$	$\begin{array}{c} -14 \leq h \leq 14, -15 \leq k \leq 15, - \\ 33 \leq l \leq 34 \end{array}$
Собранно отражений	15020	18556	24397	54265	31742
Независимые отражения	7668 [$R_{int} = 0.0366$, $R_{sigma} = 0.0714$]	9649 [$R_{int} = 0.0364$, $R_{sigma} = 0.0705$]	$10176 [R_{int} = 0.0573, R_{sigma} = 0.0991]$	11717 [$R_{int} = 0.0649$, $R_{sigma} = 0.0665$]	14366 [$R_{int} = 0.0446$, $R_{sigma} = 0.0726$]
данные/ограничения/параметры	7668/8/424	9649/0/394	10176/0/412	11717/0/556	14366/0/668
GooF on F ²	1,037	0,964	0,954	1,014	1,03
Финальные индексы R [I>=2σ (I)]	$R_1 = 0.0509, wR_2 = 0.1158$	$R_1 = 0.0408, wR_2 = 0.0688$	$R_1 = \overline{0.0485}, wR_2 = 0.0859$	$R_1 = 0.0447, wR_2 = 0.0980$	$R_1 = 0.0439, wR_2 = 0.1099$
Финальные индексы R [все данные]	$R_1 = 0.1020, WR_2 = 0.1331$	$R_1 = 0.0879, wR_2 = 0.0804$	$R_1 = 0.0937, wR_2 = 0.0979$	$R_1 = 0.0771, \ WR_2 = 0.1108$	$R_1 = 0.0688, wR_2 = 0.1195$

для пербромированных сульфониевых производных

для пербромированных сульфониевых производных

Название соединения	(Bu ₄ N) [2-B ₁₀ Br ₉ -cyclo-S(CH ₂) ₄]	(Bu ₄ N) [2-B ₁₀ Br ₉ -cyclo-S(CH ₂) ₄ O]	(Bu ₄ N) [2-B ₁₀ Br ₉ S(CH ₂ COOEt) ₂]	(Bu ₄ N) [2-B ₁₀ Br ₉ SC(NMe ₂) ₂]	(Bu ₄ N) [2-B ₁₀ Br ₉ S(Pr-Pht) ₂]*DMF
Брутто-формула	C20H44B10Br9NS	$C_{20}H_{44}B_{10}Br_9NOS$	$C_{24}H_{52}B_{10}Br_9NO_4S$	$C_{21}H_{47}B_{10}Br_9N_3S$	$C_{42}H_{63}B_{10}Br_9N_3O_5S$
Молекулярная масса	1157,91	1173,91	1278,01	1200,96	1549,3
Температура/К	296	150	100	296,15	296
Сингония	triclinic	triclinic	triclinic	orthorhombic	triclinic
Пространственная группа	P-1	P-1	P-1	Pna2 ₁	P-1
a/Å	12.3383(3)	12.1036(7)	12.267(3)	28.7751(17)	12.4399(5)
b/Å	12.6208(3)	12.3894(8)	12.684(4)	13.0033(7)	12.7882(8)
c/Å	15.5227(5)	16.1154(10)	16.358(5)	13.0237(6)	22.4401(8)
α/°	69.6240(10)	95.585(2)	85.417(12)	90	99.485(2)
β/°	86.3430(10)	105.396(2)	89.378(10)	90	90.6220(10)
γ/°	62.0110(10)	117.479(2)	62.536(10)	90	119.1000(10)
Объем ячейки/Å ³	1986.36(10)	1997.6(2)	2250.3(11)	4873.1(4)	3059.4(3)
Z	2	2	2	4	2
$\rho_{calc}g/cm^3$	1,936	1,952	1,886	1,637	1,682
μ/mm ⁻¹	9,15	9,102	8,093	7,464	5,971
F(000)	1104	1120	1232	2300	1514
Размеры кристалла/mm ³	0.6 imes 0.2 imes 0.1	$0.8\times0.6\times0.2$	$0.4 \times 0.1 \times 0.04$	$0.7\times0.5\times0.01$	$0.8\times0.15\times0.02$
Излучение	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
20 диапазон для сбора данных/°	3.928 to 59.616	3.834 to 52	3.828 to 65.012	4.222 to 49.992	3.702 to 54.998
Диапазоны индексов	$-17 \le h \le 17, -15 \le k \le 17, -21 \le 1 \le 21$	$-13 \le h \le 14, -15 \le k \le 14, -19 \le l \le 19$	$-18 \le h \le 18, -15 \le k \le 19, -24 \le 1 \le 24$	$-34 \le h \le 32, -15 \le k \le 14, -15 \le l \le 15$	$-16 \le h \le 15, -16 \le k \le 16, -28 \le 1 \le 29$
Собранно отражений	31179	16400	30470	45284	26272
Независимые отражения	11303 [$R_{int} = 0.0349$, $R_{sigma} = 0.0489$]	7725 [$R_{int} = 0.0634$, $R_{sigma} = 0.0998$]	15963 [$R_{int} = 0.0354$, $R_{sigma} = 0.0698$]	8587 [$R_{int} = 0.0861$, $R_{sigma} = 0.0701$]	13681 [$R_{int} = 0.0494$, $R_{sigma} = 0.0980$]
данные/ограничения/параметры	11303/0/382	7725/0/383	15963/0/448	8587/9/366	13681/0/637
GooF on F ²	1,014	0,972	1,027	1,043	1,225
Финальные индексы R [I>=2σ (I)]	$R_1 = 0.0360, wR_2 = 0.0796$	$R_1 = 0.0601, wR_2 = 0.1543$	$R_1 = 0.0424, WR_2 = 0.0848$	$R_1 = 0.0537, wR_2 = 0.1281$	$R_1 = 0.0512, wR_2 = 0.1127$
Финальные индексы R [все данные]	$R_1 = 0.0680, wR_2 = 0.0877$	$R_1 = 0.0893, wR_2 = 0.1698$	$R_1 = 0.0765, wR_2 = 0.0935$	$R_1 = 0.0953, wR_2 = 0.1432$	$R_1 = 0.1235, wR_2 = 0.1264$

	· · · · ·		1	
Название соединения	(Ag(PPh ₃) ₄) [1-B ₁₀ Cl ₉ N(n-Pr) ₃]*MeCN	$(Ag(PPh_3)_4)$ $[2-B_{10}Cl_9N(n-Pr)_3]$	$((Ag(PPh_3)_3)_2Br)$ [2-B ₁₀ Br ₉ N(n-Pr) ₃]	$(Bu_4N)[2-B_{10}Br_9N(n-Bu)_3]$
Брутто-формула	$C_{83}H_{84}AgB_{10}Cl9N_2P_4$	$C_{81}H_{81}AgB_{10}Cl9NP_4$	$C_{117}H_{111}Ag_2B_{10}Br_{10}NP_6$	$C_{28}H_{63}B_{10}Br_9N_2$
Молекулярная масса	1751,2	1692,52	2839,82	1255,09
Температура/К	296,15	296,15	100	150
Сингония	triclinic	monoclinic	monoclinic	monoclinic
Пространственная группа	P-1	$P2_1/n$	P21/c	P2 ₁ /c
a/Å	13.3892(4)	13.5944(5)	13.2413(6)	12.7184(14)
b/Å	14.6740(4)	14.2970(5)	49.845(3)	12.4511(13)
c/Å	22.4443(6)	45.4198(13)	18.1869(10)	30.571(3)
α/°	72.5180(10)	90	90	90
β/°	88.2740(10)	95.6100(10)	92.820(2)	98.502(3)
γ/°	88.9540(10)	90	90	90
Объем ячейки/ $Å^3$	4203.9(2)	8785.5(5)	11989.1(11)	4787.9(9)
Z	2	4	4	4
$\rho_{calc}g/cm^3$	1,383	1,28	1,573	1,741
μ/mm^{-1}	0,632	0,587	3,786	7,558
F(000)	1796	3470	5616	2440
Размеры кристалла/mm ³	0.7 imes 0.7 imes 0.7	$0.3\times0.25\times0.05$	0.8 imes 0.8 imes 0.5	0.5 imes 0.5 imes 0.04
Излучение	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2⊖ диапазон для сбора данных/°	3.548 to 68.852	2.988 to 51.998	3.486 to 56	3.538 to 49.992
Диапазоны индексов	$-20 \le h \le 18, -19 \le k \le 20, -33 \le 1 \le 32$	$-16 \le h \le 16, -15 \le k \le 17, -55 \le 1 \le 50$	$-16 \le h \le 17, -65 \le k \le 47, -17 \le 1 \le 24$	$-15 \le h \le 12, -14 \le k \le 14, -34 \le 1 \le 35$
Собранно отражений	58656	40860	67773	25463
Независимые отражения	$28610 [R_{int} = 0.0281, R_{sigma} = 0.0515]$	$\frac{16635 [R_{int} = 0.0619,}{R_{sigma} = 0.0888]}$	$28179 [R_{int} = 0.0627, R_{sigma} = 0.1020]$	$8234 [R_{int} = 0.1012, R_{sigma} = 0.1271]$
данные/ограничения/параметры	28610/0/990	16635/0/958	28179/0/1318	8234/7/438
GooF on F ²	1,125	1,038	1,018	1,149
Финальные индексы R [I>=2σ (I)]	$R_1 = 0.0502, wR_2 = 0.1025$	$R_1 = 0.0586, wR_2 = 0.1297$	$R_1 = 0.0547, wR_2 = 0.1030$	$R_1 = 0.1157, wR_2 = 0.2399$
Финальные индексы R [все данные]	$R_1 = 0.0638, wR_2 = 0.1074$	$R_1 = 0.0922, wR_2 = 0.1422$	$R_1 = 0.0893, wR_2 = 0.1118$	$R_1 = 0.1778, wR_2 = 0.2639$

для пергалогенированных аммониевых производных