Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН)

На правах рукописи

ГУСЬКОВ АНТОН ВЛАДИМИРОВИЧ

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ И ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ ДВОЙНЫХ ОКСИДОВ ЛАНТАНОИДОВ И ГАФНИЯ

1.4.4 – физическая химия (химические науки)

Диссертация

на соискание ученой степени

кандидата химических наук

Научный руководитель:

Гавричев Константин Сергеевич,

доктор химических наук,

главный научный сотрудник ИОНХ РАН

Москва – 2023

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ4
1. ОБЗОР ЛИТЕРАТУРЫ10
1.1. Гафнаты лантаноидов $RE_2Hf_2O_7$ (RE = La, Pr, Nd, Sm, Eu, Gd, Tb)12
1.2. Твердые растворы Ln ₂ O ₃ ·2HfO ₂ (Ln = Dy, Y, Ho, Er, Tm, Yb, Lu)18
1.3. Аномалии теплоемкости у соединений лантаноидов19
1.4. Заключение по разделу21
2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
2.1Синтез образцов
2.2. Идентификация образцов22
2.3. Измерение теплоемкости
2.4. Математическая обработка результатов измерения теплоемкости 25
2.5Температурные зависимости параметров кристаллических ячеек
3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
3.1. Лантана гафнат27
3.2. Празеодима гафнат
3.3. Неодима гафнат
3.4. Самария гафнат
3.5. Европия гафнат
3.6. Гадолиния гафнат60
3.7. Тербия гафнат
3.8. Твердый раствор Dy ₂ O ₃ ·2HfO ₂ 74
3.9. Твердый раствор Ho ₂ O ₃ ·2HfO ₂

3.10. Твердый раствор Er ₂ O ₃ ·2HfO ₂
3.11. Твердый раствор Tm ₂ O ₃ ·2HfO ₂ 94
3.12. Твердый раствор Yb ₂ O ₃ ·2HfO ₂ 99
3.13. Твердый раствор Lu ₂ O ₃ ·2HfO ₂ 105
3.14. Энтальпии образования двойных оксидов $Ln_2Hf_2O_7$ и $Ln_2O_3 \cdot 2HfO_2$
и их устойчивость относительно простых оксидов109
3.15. Термическое расширение двойных оксидов лантаноидов и гафния112
3.16. Заключение по разделу116
ВЫВОДЫ121
СПИСОК ЛИТЕРАТУРЫ122
ПРИЛОЖЕНИЕ к главе «Обзор литературы» L135
ПРИЛОЖЕНИЕ к главе «Результаты и обсуждение» S141

ВВЕДЕНИЕ

Актуальность темы исследования.

Проблема поиска химически стойких высокотемпературных теплозащитных веществ и материалов, возникшая в 50-тых годах прошлого века, к настоящему времени активно решается в связи с масштабным использованием и совершенствованием газовых турбин, авиадвигателей и топливных элементов. Дополнительный импульс этим работам был придан перспективами применения новых видов более экологичного топлива, в частности – водорода. Первенство по устойчивости и жаростойкости в окислительных средах принадлежит оксидным материалам, среди которых выделяются двойные оксиды гафния и лантаноидов благодаря их высокой термической стабильности и отсутствию структурных превращений в широком интервале температур (до 2200-2400°С). Эти соединения характеризуются низкой теплопроводностью, подходящими для совместимости с другими материалами коэффициентами термического расширения и перспективны для практического применения в качестве термобарьерных покрытий для защиты ответственных деталей энергетических газотурбинных установок и двигателей. Важным критерием для их применения является долговечность и коррозионная стойкость по отношению к пылевым загрязнениям воздуха - (т.н. проблема CMAS: calciamagnesia-alumina-silicate), а также к водяным парам, оксидам серы и др. Экспериментальное решение проблемы коррозионной стойкости требует больших усилий, однако термодинамическое моделирование позволяет существенно сократить затраты времени и ресурсов. Кроме того, достоинством термодинамического моделирования, в котором используются надежные исходные данные по энтальпиям образования и термодинамическим функциям изучаемых веществ в широком температурном интервале, является возможность оценить стабильность материалов в области температур, недостижимой для количественного эксперимента. Для большинства двойных оксидов лантаноидов и гафния такие данные отсутствуют. Необходимо отметить, что в ряду таких двойных оксидов образуются как соединения состава $Ln_2Hf_2O_7$ со структурой пирохлора, так и твердые растворы $Ln_2O_3 \cdot 2HfO_2$ со структурой дефектного флюорита, в связи с чем возникает необходимость систематического изучения термодинамических величин в ряду лантаноидов (Ln=La-Lu). Для прогнозирования термодинамических свойств соединений лантаноидов необходимо учитывать два разнонаправленных фактора – «лантаноидное сжатие», приводящее к уменьшению термодинамических величин при возрастании атомного номера лантаноида, и увеличение атомной массы лантаноидов, ведущее к их возрастанию. Кроме того, нужно учитывать наличие аномалий теплоемкости, связанных с магнитными превращениями и расщеплением электронных уровней вследствие взаимодействия с электрическим полем кристалла у

лантаноидов с не полностью заполненными 4*f* электронными оболочками (аномалия Шоттки). Соединения церия нами не рассматривались в связи с тем, что этот лантаноид может проявлять переменную валентность в зависимости от условий синтеза и эксплуатации материалов при высоких температурах. Результаты настоящего исследования будут полезны не только для разработки материалов термобарьерных покрытий, но и материалов для твердооксидных топливных элементов, оптики и атомной промышленности.

Степень разработанности темы исследования.

В настоящее время изучение термодинамических свойств двойных оксидов гафния и лантаноидов проводят в Санкт-Петербургском государственном университете и Институте химии силикатов РАН (высокотемпературные исследования испарения и сублимации), Калифорнийском в Дэвисе (определение энтальпий университете образования использованием метода дроп-калориметрии), Техническом университете Горной академии Фрайберга (изучение и моделирование фазовых равновесий), Факультете наук о материалах университета Пенсильвании (экспериментальное изучение фазовых равновесий), Факультете наук о материалах Императорского колледжа Лондона (расчеты устойчивости гафнатов лантаноидов), Национальной лаборатории Лос-Аламос (исследование разупорядочения пирохлоров), Национальном управлении по аэронавтике и исследованию космического пространства США, Университете Феникса США (энтальпии образования) и др. Тем не менее, в литературе отсутствуют сведения о систематическом изучении термодинамических функций двойных оксидов гафния и лантаноидов в широком температурном интервале. Имеются лишь фрагментарные данные по теплоемкости для небольших температурных интервалов ограниченного числа веществ. Кроме того, данные для высокотемпературной теплоемкости получены, в основном, методом дифференциальной сканирующей калориметрии, которые без соответствующей коррекции могут характеризоваться значительной систематической ошибкой. Ограниченно присутствуют такие сведения и в термодинамических базах данных, что создает препятствие для моделирования фазовых равновесий и определения устойчивости двойных и более сложных оксидов гафния и лантаноидов.

Таким образом, предпринятые впервые систематические исследования изобарной теплоемкости для всего ряда двойных оксидов гафния и лантаноидов, на основании которых выполнен расчет температурных зависимостей термодинамических функций, необходимых для оценки термодинамической стабильности, представляют новый вклад в изучение физико-химических свойств двойных оксидов гафния и лантаноидов.

Данные по термическому расширению двойных оксидов лантаноидов и гафния критически важны для оценки изменений параметров решетки критически важны для создания многослойный высокотемпературных материалов. Между тем, имеющаяся литература по оценке параметров термического расширения ограничена и требует подтверждения.

<u>Цель и задачи.</u>

Цель настоящей работы состоит в получении надежных данных, необходимых для разработки термодинамических основ получения новых высокотемпературных материалов на базе соединений и твердых растворов оксидов лантаноидов и диоксида гафния. Объектами исследования явились поликристаллические гафнаты лантаноидов структурного типа пирохлора (пр.гр. Fd3m) Ln₂Hf₂O₇ (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb) и твердые растворы стехиометрического состава со структурой дефектного флюорита (пр.гр. Fm3m) Ln₂O₃·2HfO₂ (Ln=Dy, Ho, Er, Tm, Yb, Lu).

Для достижения цели работы были поставлены и решены следующие задачи.

1. Синтезированы однофазные образцы соединений и твердых растворов диоксида гафния и оксидов лантаноидов стехиометрического состава Ln₂O₃:2HfO₂.

2. Проведена идентификация полученных образцов методами рентгенофазового и химического анализов, растровой электронной микроскопии.

3. Измерены изобарные теплоемкости *C*_p образцов методами релаксационной (2–35 K), адиабатической (6–340 K) и дифференциальной сканирующей (310–1800 K) калориметрии.

4. Выполнено согласование температурных зависимостей теплоемкости, полученных разными калориметрическими методами.

5. Проведено сглаживание экспериментальных значений теплоемкости и расчет термодинамических функций: энтропии и изменения энтальпии.

6. Оценена температурная устойчивость гафнатов лантаноидов относительно простых оксидов.

7. Определены температурные зависимости параметров кубических решеток двойных оксидов лантаноидов и гафния.

<u>Научная новизна</u>

состоит в следующем:

1. Впервые систематически измерены величины изобарной теплоемкости 7 соединений $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) и 6 стехиометрических твердых растворов Ln_2O_3 ·2HfO₂ (Ln = Dy, Ho, Er, Tm, Yb, Lu) методами релаксационной (2 – 35 K), адиабатической (6 – 340 K) и дифференциальной сканирующей калориметрии (320 – 1800 K).

2. По сглаженным значениям изобарной теплоемкости рассчитаны термодинамические функции изученных веществ в интервале температур 2 - 1800 К, в том числе энтропии и изменения энтальпии. 4. Проведена оценка вклада в изобарную теплоемкость аномалии Шоттки для соединений Ln₂Hf₂O₇ (Ln = Pr, Nd, Sm, Eu,Tb) и твердых растворов Ln₂O₃·2HfO₂ (Ln = Dy, Ho, Er, Tm, Yb), необходимая для корректной экстраполяции теплоемкости в область самых высоких температур.

5. Проведена оценка вклада низкотемпературных магнитных превращений в энтропию изученных веществ.

6. Выполнены расчеты энергии Гиббса образования гафнатов лантаноидов из простых оксидов и оценка их высокотемпературной устойчивости.

7. Уточнены температурные зависимости параметров кубических решеток гафнатов лантаноидов $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd) и впервые определены для $Tb_2Hf_2O_7$ и твердых растворов Ln_2O_3 ·2HfO₂ (Ln = Dy, Ho, Er, Tm, Yb, Lu).

Теоретическая и практическая значимость работы.

В выполненных исследований изобарной результате теплоемкости И расчета термодинамических функций для ряда гафнатов лантаноидов $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) структурного типа пирохлора и твердых растворов стехиометрического состава со структурой дефектного флюорита Ln₂O₃·2HfO₂ (Ln = Dy,Ho, Er, Tm, Yb, Lu) в широком интервале температур получен массив данных, необходимых для оценки термической и химической стабильности новых высокотемпературных материалов, который может быть использован для моделирования фазовых равновесий с участием изученных веществ. Подтверждено отсутствие структурных превращений у данных веществ в широком температурном диапазоне. Обнаружены аномалии теплоемкости, подтверждающие протекание процессов, связанных с магнитным упорядочением в области самых низких температур у большинства изученных двойных оксидов и показано, что они вносят существенный вклад в энтропию. Выделены вклады в теплоемкость аномалии Шоттки, отражающие взаимодействие не полностью заполненных 4f электронных оболочек с кристаллическим полем. Показано уменьшение устойчивости гафнатов лантаноидов относительно простых оксидов с ростом температуры и в ряду La₂Hf₂O₇→Gd₂Hf₂O₇. Определены температурные зависимости параметров кубических решеток двойных оксидов.

Методология и методы исследования.

Образцы для исследований синтезированы методом обратного осаждения с последующим отжигом для полноценной кристаллизации и охарактеризованы методами РФА, электронной микроскопии и химического анализа. Для получения более достоверных величин теплоемкость изучали тремя методами: релаксационной (2–35 K), адиабатической (6–340 K) и

дифференциальной сканирующей калориметрии (310–1800 К) с последующим согласованием данных, опираясь на значения, полученные методом адиабатической калориметрии. Сглаживание температурных зависимостей теплоемкости проводили как с помощью опубликованного в научной литературе, так и разработанного ранее программного обеспечения. На основании сглаженных значений теплоемкости вычислены значения энтропии и изменения энтальпии в изученном температурном диапазоне. С использованием метода, предложенного Веструмом, оценены температурные зависимости аномальной теплоемкости Шоттки. Методом рентгеновской высокотемпературной дифракции (300-1300 К) определены температурные зависимости параметров кубических решеток двойных оксидов.

Положения, выносимые на защиту.

1. Методика получения однофазных образцов, пригодных для измерения термодинамических свойств по химическому составу, структуре и размеру частиц.

2. Результаты измерения изобарной теплоемкости 7 однофазных соединений структурного типа пирохлора $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) и 6 стехиометрических твердых растворов со структурой дефектного флюорита Ln_2O_3 ·2HfO₂ (Ln = Dy, Ho, Er, Tm, Yb, Lu) методами релаксационной, адиабатической и дифференциальной сканирующей калориметрии.

3. Результаты расчета сглаженных значений термодинамических свойств— теплоемкости, энтропии и приращения энтальпии соединений $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) и стехиометрических твердых растворов $Ln_2O_3 \cdot 2HfO_2$ (Ln = Dy, Ho, Er, Tm, Yb, Lu).

4. Результаты влияния магнитных превращений на энтропию двойных оксидов.

5. Результаты оценки вклада аномалии Шоттки в изобарную теплоемкость соединений $Ln_2Hf_2O_7$ (Ln = Pr, Nd, Sm, Eu, Tb) и твердых растворов $Ln_2O_3 \cdot 2HfO_2$ (Ln = Dy, Ho, Er, Tm, Yb).

6. Результаты оценки высокотемпературной устойчивости гафнатов лантаноидов (Ln₂Hf₂O₇ (Ln = La, Pr, Nd, Sm, Eu, Gd)) относительно простых оксидов.

7. Результаты определения температурных зависимостей параметра кубической решетки соединений $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) и твердых растворов Ln_2O_3 ·2HfO₂ (Ln = Dy, Ho, Er, Tm, Yb, Lu)

Степень достоверности и апробация результатов.

Достоверность полученных результатов выводов обеспечена использованием И апробированных методов синтеза однофазных образцов сложных оксидов с заданной структурой; современных методов исследования состава, морфологии и структуры образцов (элементный и рентгенофазовый анализы, электронная микроскопия); трех независимых адиабатическая калориметрических методов (релаксационная, И дифференциальная

сканирующая калориметрия); калибровки калориметров с применением рекомендованных стандартов и расчетных процедур с использованием апробированного ранее программного обеспечения.

опубликовано 17 По теме работы статей в рецензируемых научных журналах, рекомендованных ВАК, в том числе 4 статьи в журналах первого квартиля (Q1), индексируемых в Web of Science и Scopus. Результаты работы представлены и обсуждены в 15 докладах на профильных конференциях: Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов» (Москва, 2021), Конференция молодых ученых по общей и неорганической химии (Москва, 2021-2023), XIX Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов» (Москва, 2021-2022), Восьмая Международная научная конференция "Химическая термодинамика и кинетика" (Тверь, 2018), ISAC-2019 3rd International seminar on advanced calorimetry (Kazan, Russia, 2019), 5th Central and Eastern European Conference on Thermal Analysis and Calorimetry & 14th Mediterranean Conference on Calorimetry and Thermal Analysis (Roma, Italy, 2019), XVI International Conference on Thermal Analysis and Calorimetry in Russia RTAC-2020 (Moscow, Russia, 2020), XII международное Курнаковское совещание по физико-химическому анализу (Санкт-Петербург, 2022), XXIII International Conference on Chemical Thermodynamics in Russia (Kazan, Russia, 2022), X Всероссийская конференция «Высокотемпературная химия оксидных систем и материалов» (Санкт-Петербург, 2023).

Работа поддержана грантами Российского научного фонда № 18-13-00025 и 18-13-00025П, а также стипендией Президента Российской Федерации.

1. ОБЗОР ЛИТЕРАТУРЫ

Фазовые равновесия в высокотемпературных системах $RE_2O_3 - HfO_2$ подробно рассмотрены в работе [1], которой предшествовал обзор [2]. Температурной доминантой диаграмм является диоксид гафния с температурой плавления ~3053±30 К. Также как и диоксид циркония, диоксид гафния кристаллизуется в трех модификациях – низкотемпературной моноклинной $P2_1/c$, тетрагональной $P4_2/nmc$ и высокотемпературной кубической Fm3m. Общий вид диаграмм вид близок к системам $RE_2O_3 - ZrO_2$. Температурный интервал приведенных в литературе фазовых равновесий ограничен снизу величиной 1400 – 1900 К из-за минимальной диффузионной подвижности компонентов. Известны исследования системы $Y_2O_3 - HfO_2$, когда для достижения равновесных состояний при температурах ~700 К образцы отжигали в течение 189 суток [3], а в случае системы $Yb_2O_3 - HfO_2$ время достижения равновесного состояния при температурах ~800 - 1500 К составляло более 5000 ч [4].

Фазовые диаграммы $RE_2O_3 - HfO_2$ (Рис. L1, L2 Приложения) делятся на два вида: с существованием соединений $RE_2Hf_2O_7$ структурного типа пирохлора (*Fd3m*) (*Py*) в случае «легких» лантаноидов ряда RE=La...Tb и без образования соединения при соотношении металлов 1:1 для ряда RE=Dy...Lu, а также Y. Хотя выполненные расчеты процессов упорядочения в системах $RE_2O_3 - HfO_2(ZrO_2)$ не запрещают существование пирохлоров $RE_2Hf_2O_7$ и в случае тяжелых лантаноидов [5, 6, 7], образование соединений со структурного типа пирохлора ограничено кристаллохимическими причинами: необходимо, чтобы соотношение ионных радиусов металлов $r_{^{3+}RE}/r^{^{4+}}_{Hf}$ было не менее значения 1.44-1.46 [8, 9]. Именно по этой причине в ряду пирохлоров $RE_2Hf_2O_7$ появляется соединение Tb₂Hf₂O₇, тогда как цирконат тербия отсутствует в ряду цирконатов $RE_2Zr_2O_7$, RE = La - Gd [1, 2].

Диаграммы La₂O₃ – HfO₂ и Pr₂O₃ – HfO₂ имеют дистектический характер, и гафнаты лантана и празеодима плавятся конгруэнтно, вопрос конгруэнтности плавления гафнатов неодима и самария не является решенным окончательно, остальные пирохлоры (Eu – Lu и Y) при нагревании подвергаются разупорядочению и переходу в структуру дефектного флюорита *Fm3m*. Расчет температур обратимого фазового превращения $Fd3m \leftrightarrow Fm3m$ выполнен в работе [7], где показано, что температура превращения понижается при переходе от гафната европия к гафнату тербия. Предполагается, что фазовый переход *пирохлор* $\leftrightarrow \phi$ люорит в цирконатах и гафнатах относится ко второму роду, так как сопровождается минимальными изменениями мольного объема [10].

Особенностью фазовых равновесий в большинстве систем RE₂O₃ – HfO₂ является образование на основе высокотемпературного кубического диоксида гафния непрерывных рядов твердых растворов (*F*, рис.L1, L2) структурного типа дефектного флюорита состава $(1-x)RE_2O_3 xHfO_2$, где х достигает значений от 0 до 0.6-0.8. Твердые растворы образуются замещением гафния редкоземельным элементом, при этом разница в положительных зарядах ионов Hf⁴⁺ и RE³⁺ компенсируется появлением кислородной вакансии с сохранением кубической структуры (рис. L3) [11]. Центром твердых растворов является стехиометрическое соотношение металлов 1:1 или RE₂O₃·2HfO₂. Именно при этом соотношении металлов в результате упорядочения структуры дефектного флюорита происходит образование соединений RE₂Hf₂O₇ структурного типа пирохлора при $r^{3+}_{\text{RE}}/r^{4+}_{\text{HF}} > 1.44-1.46$, т.е. в случае «легких» лантаноидов. Таким образом, пирохлоры La₂Hf₂O₇ - ...- Tb₂Hf₂O₇ образуются при охлаждении разупорядоченных твердых растворов флюоритной структуры La₂O₃·2HfO₂ - ... - Tb₂O₃·2HfO₂. Отличительной особенностью соединений RE₂Hf₂O₇ является относительно небольшая протяженность области гомогенности (до 3-10 мол.%) по сравнению с твердыми растворами RE₂O₃·2HfO₂ [1]. Отметим, что нередко твердым растворам RE₂O₃·2HfO₂ в литературе приписывают формулу соединений RE₂Hf₂O₇, что, безусловно, не является корректным.

Следует различать кристаллические твердые растворы структурного типа флюорита и метастабильные наноразмерные флюоритоподобные фазы, которые образуются при невысокой температуре синтеза (< 1400 – 1500 K), недостаточной для протекания диффузионных процессов. Отжиг при более высоких температурах (обычно при 1800 – 1900 K) и достаточном времени $(3 - 4 \, u)$ приводит к необратимой рекристаллизации и образованию стабильных фаз структурного типа пирохлора или дефектного флюорита [12, 13, 14].

Описание фазовых равновесий в системах $RE_2O_3 - HfO_2$ будет неполным, если не упомянуть образование при температурах ниже ~ 1900 К в концентрационной области более богатой оксидами RE так называемых δ -фаз – соединений $RE_4Hf_3O_{12}$ с широкими областями гомогенности. Существование этих фаз определяется кристаллографическим соотношением $1.21 < r^{3+}_{RE}/r^{4+}_{Hf} < 1.44$ -1.46, то есть δ -фазы должны возникать при взаимодействии оксидов гафния и «тяжелых» лантаноидов (Dy - Lu) и иттрия [12,15].

Первые комплексные исследования кристаллизации составов RE₂O₃:2HfO₂, определение типа структуры, плотности, термического расширения и температур плавления выполнены в работе [16], табл. L1. В этой же работе показана высокая химическая стойкость по отношению к ряду концентрированных кислот и щелочей. Для растворения полученных двойных оксидов при выполнении химического анализа использовали сплавление с пиросульфатом калия.

Важным свойством соединений RE₂Hf₂O₇ и твердых растворов RE₂O₃·2HfO₂ является отсутствие структурных переходов в широком температурном интервале, однако в области самых низких температур соединения лантаноидов характеризуются магнитными превращениями за счет упорядочения спинов 4*f*-электронов Ln³⁺, исключая La³⁺, и Lu³⁺, а также Eu³⁺, результирующий угловой момент 4*f*-электронов которого равен нулю (J = 0) [17].

1.1. <u>Гафнаты лантаноидов Ln₂Hf₂O₇ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb).</u>

Лантана гафнат. Фазовые равновесия в системе La₂O₃-HfO₂ изучены при температурах 1900 – 3100 К (здесь и далее см. Приложение L, рис.L1(а)). В системе найдено единственное соединение - La₂Hf₂O₇ [18-23]. В отличие от более тяжелых гафнатов лантаноидов, La₂Hf₂O₇ плавится конгруэнтно при температуре 2560 К. La₂Hf₂O₇ кристаллизуется в структурном типе пирохлора (*Fd3m*) с параметром кубической ячейки a=10.776 Å [1], а по данным [22] a=10.779Å. Гафнат лантана характеризуется широкой областью гомогенности от 3 мол.% при 1600 К до 12 мол.% при 2500 К, и максимальной температурой плавления ~ 2673 К, как найдено в [23]. В работе [18] утверждается, что гафнат лантана плавится конгрузнтно при температуре 2573 ± 30 K. В исследовании [20] температура конгруэнтного плавления определена как 2693 К. Кристаллохимические характеристики гафната лантана впервые изучены в работах [16, 19] и показано, что полученный твердофазным синтезом при 2050 К La₂Hf₂O₇ имеет структурный тип пирохлора, a = 10.774 Å, а размеры кристаллов составляют 0.7-8 мкм. В работах [24, 25] параметр *а* кристаллической ячейки пирохлора определен как 10.7697 Å, и в работе [9] как 10.7709 Å, соответственно. Более поздние исследования [26, 27] показали, что гафнат лантана является фазой переменного состава, и параметр кубической решетки пирохлора в пределах области гомогенности La₂Hf₂O₇ (без указания температуры) линейно зависит от атомного соотношения лантана и гафния в образце:

a, Å =0.4721(La/Hf, at.) +10.301.

В [26] отмечено, что при использовании способа соосаждения гидроксидов для последующего синтеза прокаливанием на воздухе при температуре 1400 К образуется флюоритная фаза (*Fm3m*), тогда как для получения гафната со структурой пирохлора требуется длительный (~50 ч) отжиг при 1723 К. В том случае, если синтез осуществляют из расплава, последующее охлаждение приводит к образованию структуры пирохлора без перехода во флюоритную модификацию. Особенности образования пирохлора из наноразмерного флюорита при нагревании исследованы в работах [12]. Было показано, что прокаливание гидроксидного

прекурсора при 900-1500 К приводит к образованию нанокристаллической флюоритоподобной структуры. Дальнейшее нагревание способствует росту частиц до микронных размеров и постепенному формированию структуры пирохлора.

Энтальпия образования La₂Hf₂O₇ структурного типа пирохлора из оксидов, приведенная в [26, 27] по результатам калориметрии растворения в расплаве молибдата натрия при 975 K, составила $\Delta H^{\circ}_{f,ox}(\kappa \ montmed k \$

Термическое расширение гафната лантана впервые исследовали методом высокотемпературной рентгеновской дифракции в [19]. Показано, что температурная зависимость параметра кубической решетки имеет линейный характер в интервале температур 273 – 1873 К, а относительный коэффициент термического расширения $\alpha_{273} = 10.2 \times 10^{-6}$ K⁻¹. Позднее тем же методом изучали зависимость параметра решетки гафната лантана в интервале температур 298 – 1500 К [25] и обнаружили слабую квадратичную зависимость от температуры: $a(Å)=10.7686+8.51877\cdot10^{-5}\times(T-273)$ +8.80464·10⁻⁹×(T-273)². В [2] приведен относительный коэффициент термического расширения дилатометрии $\alpha_{298} = 7.85\cdot10^{-6}$ K⁻¹ (293 – 1173 K), однако в более поздней работе [34] содержится другое значение 9-10·10⁻⁶ K⁻¹.

<u>Празеодима гафнат</u>. Двойной высокотемпературный оксид $Pr_2Hf_2O_7$ структурного типа пирохлора – единственное соединение в системе $Pr_2O_3 - HfO_2$ [1, 2,16, 20, 35]. Из приведенной в [2, 35] диаграммы системы (рис. L1(b)) $Pr_2O_3 - HfO_2$ следует, что $Pr_2Hf_2O_7$ при температурах порядка 1873 К характеризуется областью гомогенности около 10 мол.%и инконгруэнтно плавится при достижении 2693 К. По мнению авторов [16, 20] гафнат празеодима конгруэнтно плавится при температуре 2610 ± 30 К. Других превращений во всей температурной области существования гафната празеодима обнаружено не было, за исключением магнитных переходов в области самых низких температур (<10 K), характерных для большинства соединений лантаноидов [17]. Энтальпия образования из оксидов по данным [36] составляет -104 кДж/ моль. Физические свойства гафната празеодима в низкотемпературной области изучали с точки зрения образования квантовой системы спинового льда [37, 38]. Для этих же целей в работах [39, 40] выращены образцы монокристаллического $Pr_2Hf_2O_7$ с параметрами кубических решеток типа пирохлора 10.68411(2) и 10.6727(1) Å, соответственно. В работе [41] приведено значение для a = 10.6804 Å, близкое к полученной в [9] величине a = 10.6854(1) Å. При температурах 0.5– 20 К выполнены исследования магнитной восприимчивости и изотермической намагниченности, а также молярной теплоемкости в области 1.8 – 300 К [37, 40] и 0.35 – 10.0 К [38] методом релаксационной калориметрии. Магнитные превращения приводят к возрастанию теплоемкости при понижении температуры от 10 К. Авторами [37] проанализирована температурная зависимость избыточной теплоемкости гафната празеодима ($C_{exc}(T)$) в области 1.8–300 К вычитанием решеточной теплоемкости $Pr_2Hf_2O_7$, которая была оценена из теплоемкости La₂Hf₂O₇. Показано наличие плавного максимума при 50 К на кривой избыточной теплоемкости $C_{exc}(T)$ и ее дальнейшее возрастание при повышении температуры.

Коэффициент линейного термического расширения гафната празеодима по данным [2, 16] составляет α_{298} =9.13·10⁻⁶ K⁻¹ (293 – 1173 K).

Неодима гафнат. Гафнат неодима – единственное соединение в системе Nd₂O₃ – HfO₂ (рис.L1(с)) [1, 2, 16]. Nd₂Hf₂O₇ кристаллизуется в структуре пирохлора с параметром кубической ячейки 10.648 Å. Точный характер плавления (конгруэнтный или инконгруэнтный) к настоящему времени не установлен, в [16] приводится температура плавления состава Nd₂O₃·2HfO₂, равная ~2730 К. В работе [23] представлена диаграмма с инконгруэнтным плавлением гафната неодима. В более позднем исследовании [20] определена температура инконгруэнтного плавления 2723±25 К и оценена протяженность области гомогенности в 62-73 мол.% HfO₂ при 2873 К. Возможная температура твердофазного перехода пирохлор-флюорит по расчетам из первых принципов [7] составляет 3225 К, что явно ошибочно, поскольку это значительно выше температуры плавления. Данные по параметру решетки Nd₂Hf₂O₇, представленные в литературе [1, 2, 9, 25, 42, 43, 44, 45], имеют довольно большой разброс от 10.536 [42] до 10.6608 Å [25]. Энтальпия образования Nd₂Hf₂O₇ из оксидов по данным [36] составляет -85 кДж/моль при 298 К. В работах [45, 46] выполнены измерения молярной теплоемкости в интервале 1.8 – 300 К методом релаксационной калориметрии. К сожалению, полученные результаты приведены только в графическом виде. Там же установлено существование антиферромагнитного перехода в области 0.55-1.8 К, а также аномалии Шоттки с максимумом при температуре ~ 130 К. В [45] с помощью рентгеновской дифракции высокого разрешения на синхротронном излучении были получены параметры кубической ячейки гафната неодима при 0.6 и 290 К, которые составили 10.573(1) и 10.6389(1) Å, соответственно. Эффузионным методом Кнудсена исследованы процессы испарения порошков гафната неодима в области 2400-2600 К [47, 48] и показано, что состав пара в основном определяется монооксидом неодима и атомарным кислородом и сублимация носит инконгруэнтный характер.

Термическое расширение гафната неодима методом дилатометрии изучали в интервале температур (293–1173 K) [16], найдено α_{293} =9.27·10⁻⁶ K⁻¹. Температурная зависимость параметра (273-1273 K) кубической решетки пирохлора Nd₂Hf₂O₇ по данным [25] составляет a(Å)=10.6374+9.59065×10⁻⁵×(*T*-273) +3.60908×10⁻⁹×(*T*-273)², *T*= 273 -1500 K.

Самария гафнат. Образование гафната самария в системе Sm₂O₃ – HfO₂ структурного типа пирохлора и его разупорядочение с переходом в структурный тип дефектного флюорита при высоких температурах впервые установлено в работе [49]. Более детальные исследования системы Sm₂O₃ – HfO₂, выполненные позже [50] (рис.L1(d)), подтвердили существование соединения Sm₂Hf₂O₇ структурного типа пирохлора с достаточно широкой областью гомогенности (22-43 мол.% HfO₂ при 1550-2573 K), там же определена зависимость параметра кубической решетки от состава: a(Å)=5.128 + 0.0045x (15 <x< 40) (х – мольная фракция оксида самария) и оценена температура конгруэнтного плавления >2713 К. Однако, в исследовании [36] полагают, что гафнат самария плавится инконгруэнтно при 2823±25 К. Параметр кристаллической решетки стехиометрического гафната самария в [51] при 298 К определен как 10.556 Å, а область гомогенности составляет 31-38 мол.% HfO₂ (2373 K) в интервале значений параметра a от 10.506 до 10.628 Å, соответственно. Несколько иная температура плавления гафната самария (~2760 К) приведена в [36] наряду с параметром решетки стехиометрического Sm₂Hf₂O₇ a = 10.568 Å и энтальпией образования из элементов $\Delta_{f}H^{\circ}(298.15 \text{ K}) = -4139.2$ кДж/моль. Авторами [52] были выполнены измерения приращения энтальпии в области 730-1672 К методом калориметрии сброса и рассчитаны теплоемкость, энтропия и приращение энтальпии в интервале 298-1700 К. Эти эксперименты не затрагивают интервала 0-730 К и не являются прямыми измерениями по отношению к теплоемкости, поэтому требуют дополнительного подтверждения, по крайней мере, в интервале 298-730 К.

Температурную зависимость параметра кристаллической решетки $Sm_2Hf_2O_7$ (пирохлор) изучали в работе [25], где получена зависимость $a(Å) = 10.5815 + 9.70648 \cdot 10^{-5} \times (T-273) - 1.75043 \cdot 10^{-9} \times (T-273)^2$, а относительный коэффициент термического расширения по данным [16] равен $\alpha_{293} = 10.60 \cdot 10^{-6} \text{K}^{-1}$.

<u>Европия гафнат.</u> Диаграмма плавкости системы $HfO_2 - Eu_2O_3$ впервые изучена в работах [53, 54]. Гафнат европия, $Eu_2Hf_2O_7$, структурного типа пирохлора, кристаллизуется при соотношении металлов Eu:Zr = 1:1 в области непрерывного ряда твердых растворов на основе диоксида гафния (1-*x*) $EuO_{1.5}$ ·*x* HfO_2 (x \approx 0.45-1.0), имеющих кристаллическую структуру разупорядоченного флюорита [1], (рис.L1(е)). Кристаллизация состава 1:1 и необратимое образование соединения $Eu_2Hf_2O_7$ структурного типа пирохлора происходит под действием

высокой температуры (1600-1900 К), активизирующей диффузионные процессы [13, 55]. Гафнат европия относится к высокотемпературным оксидам и не имеет структурных превращений вплоть до температуры перехода в структуру разупорядоченного флюорита при нагревании до ~2500-2700 К [5-7]. Температура плавления твердого раствора Eu₂O₃·2HfO₂ по данным [16] составляет 2740±30 К. Параметр кубической ячейки пирохлора по данным [1] равен 10.540 Å, температура плавления 2735 K, относительный коэффициент термического расширения α₂₉₃=10.82·10⁻⁶ K⁻¹ (293 -1173 K) [1, 16]. По данным [25] температурная зависимость параметра кубической ячейки быть пирохлора может выражена уравнением $a(\text{\AA})=10.5514+10.3043\cdot10^{-5}\times(T-273)-2.14053\cdot10^{-9}\times(T-273)^{2}.$

Высокотемпературную теплоемкость Eu₂Hf₂O₇ измеряли методом дифференциальной сканирующей калориметрии (ДСК) в атмосфере гелия в интервале 373-1073 К [56], а также рассчитывали из результатов измерений приращения энтальпии в диапазонах 774-1679 К [52] и 977-1738 К [31], полученных методом калориметрии сброса. Приведенные в работе [56] данные кажутся завышенными, а результаты [31] и [52] не согласуются между собой, особенно в области температур > 1000 К.

Гадолиния гафнат. Первые детальные исследования фазовых равновесий в системе Gd₂O₃ -HfO₂ представлены в работах [57, 58, 59] (рис.L1(f)) и показано, что гафнат гадолиния образуется при x=0.5 в области непрерывного ряда твердых растворов на основе диоксида $xGd_2O_3 \cdot 2(1-x)HfO_2$, гафния имеющих структуру дефектного флюорита. Gd₂Hf₂O₇ кристаллизуется в кубической структуре типа пирохлора, параметр решетки которого составляет по различным данным от 10.475 до 10.550 Å [1, 2, 25, 41, 59, 60], что возможно связано с отклонениями от стехиометрии и достаточно протяженной областью гомогенности. От твердого раствора Gd₂O₃·2HfO₂ гафнат гадолиния отличается упорядоченным расположением катионов в кристаллической решетке, при этом энтальпия превращения Gd₂Hf₂O₇↔Gd₂O₃·2HfO₂ (пирохлор↔флюорит) составляет 23.6±3.1 кДж/моль•К [26]. Соединение Gd₂Hf₂O₇ структурного типа пирохлора является низкотемпературной фазой по отношению к флюориту Gd₂O₃·2HfO₂ с максимальной температурой превращения «пирохлорфлюорит» 2600-2800 К [7, 51, 59]. До этих значений температуры других структурных переходов у гафната гадолиния не наблюдали. При получении пирохлора Gd₂Hf₂O₇ из смесей оксидов или гидроксидов обязателен отжиг при температуре 1500-1800 К, поскольку при более низких температурах независимо от способа получения исходной смеси происходит образование метастабильного наноразмерного твердого раствора Gd₂O₃·2HfO₂ со структурой флюорита[12, 26, 60]. Как и другие соединения лантаноидов (за исключением La, Eu и Lu), Gd₂Hf₂O₇ при температурах <20 К при охлаждении испытывает переход в антиферромагнитное

состояние [61]. Низкотемпературное превращение было зафиксировано измерением теплоемкости методом релаксационной калориметрии при 0.4–5.8 К, а его природа подробно рассмотрена в работе [62]. Высокотемпературная теплоемкость гафната гадолиния измерена в интервалах температур 390-750 К [30], 980-1740 К [31] и 350-840 К [56]. Полученные результаты по измерению $C_p(T)$ не согласуются между собой и достаточно противоречивы. Энтальпия образования из оксидов приведена в [26] и составляет $\Delta H_{f,ox}$ =-48.8±4.7 кДж/моль.

Температурная зависимость параметра кубической ячейки в [25] описана уравнением $a(\text{\AA})=10.4908+8.3635\cdot10^{-5}\times(T-273)+1.85027\cdot10^{-8}\times(T-273)^2$.

Тербия гафнат. Взаимодействие оксидов гафния и тербия приводит к образованию непрерывного ряда кубических твердых растворов (1-*x*)TbO_{1.5}:*x*HfO₂ (*x*≈0.45-1.0) структурного типа разупорядоченного флюорита, рис.L2 (а). При стехиометрическом соотношении тербия и гафния 1:1 происходит образование гафната тербия Tb₂Hf₂O₇ с относительно узкой областью гомогенности структурного типа пирохлора [1, 2, 51]. Необходимым кристаллохимическим условием образования соединения структурного типа пирохлора является соблюдение соотношения $r_{RE}^{3+}/r_{HE}^{4+} > 1.46$ [8], а кинетическим – достаточно высокая температура для активации диффузионных процессов в твердой фазе (1500 – 1900 К) [12, 14]. Дальнейшее повышение температуры до ~2500 К приводит к обратимому переходу гафната тербия в структуру разупорядоченного флюорита и образованию твердого раствора Tb₂O₃·2HfO₂ [5, 6, 7]. Tb₂Hf₂O₇, в котором соотношение r^{3+}_{RF}/r^{4+}_{Hf} составляет 1.46, завершает ряд гафнатов «легких» лантаноидов структурного типа пирохлоров. В работе [14] изучено образование нанокристаллического гафната тербия и его превращение в кристаллическую керамику обычной размерности структурного типа пирохлора, там же обращено внимание на возможное присутствие ионов Tb⁴⁺ в пирохлорной кристаллической структуре. Весьма интересным исследованием комплекса физических свойств пирохлора Tb₂Hf₂O₇ в области 1.8-300 К является работа [64], в которой выполнены изучение магнитных свойств, измерения молярной теплоемкости методом релаксационной калориметрии и анализ аномального вклада в теплоемкость (аномалия Шоттки). Однако температурная зависимость теплоемкости и аномалия Шоттки в этой работе приведены только в графическом виде, исключающем использование этих результатов в расчетных целях.

Фазовые равновесия оксидов «тяжелых» лантаноидов Dy, Y, Ho, Er, Tm, Yb, Lu изучали в работе [51] (диспрозий) и остальные Ln – в работах [4, 65, 66, 67, 68, 69, 70, 71, 72], рис.L2. На рис.L4 приведена диаграмма системы Tm_2O_3 – HfO₂, отсутствующая в работе [1] и на рис.L2. Установлено существование протяженных областей непрерывного ряда твердых растворов (от 0 до 55-60 мол.% RE₂O₃ при *T*~2700 K) на основе кубического диоксида гафния. Твердые растворы $xRE_2O_3 \cdot (I-x)HfO_2$ (RE = Dy, Y, Ho, Er, Tm, Yb, Lu) образуются заменой иона Hf⁴⁺ на RE³⁺, а разность в зарядах ионов компенсируется вакансией по кислороду. В результате твердые растворы имеют кубическую структуру (структурный тип дефектного флюорита *F*m3m). Твердые растворы характеризуются высокими температурами плавления и химической стойкостью [16]. В случае систем Yb₂O₃-HfO₂ и Lu₂O₃-HfO₂ в области, близкой к рациональным составам твердых растворов, зафиксированы максимумы температур плавления, превышающие примерно на 100 K температуру плавление диоксида гафния.

Концентрационные области существования твердых растворов $xRE_2O_3 \cdot (1-x)HfO_2$ уменьшаются с понижением температуры, однако структурных превращений найдено не было. Тем не менее, в равновесном состоянии, которое было достигнуто при температурах около 700 К в течение 4500-5000 час отжига, в системах Y_2O_3 - HfO_2 [3] и Yb_2O_3 - HfO_2 [4] обнаружен распад твердых растворов на HfO_2 и Y_2O_3 и HfO_2 и $Ln_4Hf_3O_{12}$, соответственно, рис.L5 и L6. По остальным системам подобных исследований не проводили.

Серединой непрерывного ряда твердых растворов является состав с соотношением металлов RE:Hf=1:1. Стехиометрическое соотношение металлов способствует упорядочению структуры, что подтверждается образованием соединений $Ln_2Hf_2O_7$ структурного типа пирохлора в случае легких лантаноидов (Ln=La...Tb) при соблюдении необходимого для образования пирохлоров условия $RE^{3+}/Hf^{4+}>1.45-1.46$ [8, 9]. Для тяжелых лантаноидов (от Dy до Lu) это соотношение не соблюдается из-за уменьшения размера иона RE^{3+} в результате лантаноидного сжатия.

Энтальпию образования кубического твердого раствора ¹/₂[*x*Y₂O₃·(*1-x*)HfO₂] из моноклинного диоксида гафния и C-Y₂O₃ изучали методом калориметрии растворения в [73]. В работе [74] представлены результаты изучения термического расширения твердого раствора методом высокотемпературной рентгеновской дифракции в интервале 298 – 2173 К.

Высокотемпературную теплоемкость твердого раствора Dy₂O₃·2HfO₂ рассчитывали из экспериментальных данных по измерению приращения энтальпии, полученных методом калориметрии сброса при температурах 823 – 1670 К в работе [52]. Теплоемкость Dy₂O₃·2HfO₂

измерена методом дифференциальной сканирующей калориметрии в интервале 298-800 К, а термическое расширение – методом высокотемпературной рентгеновской дифрактометрии – в области 298 – 1973 К в работе [75].

Других исследований термодинамики твердых растворов $xRE_2O_3 \cdot (1-x)HfO_2$ (RE = Dy, Y, Ho, Er, Tm, Yb, Lu) в литературе не найдено.

1.3. Аномалии теплоемкости у соединений лантаноидов.

Особенности в температурном поведении теплоемкости соединений лантаноидов определяются электронной конфигурацией их ионов. В ряду лантаноидов La, ..., Lu происходит заполнение 4f электронной оболочки, приводящее к уменьшению размеров атомов и ионов – лантаноидному сжатию. От участия в образовании валентных связей 4f уровень защищен внешними оболочками $5s^2$ и $5p^6$, которые отвечают за основное состояние ионов лантаноидов 3+. Однако это не исключает взаимодействие 4f электронов между собой и внешними полями. Различают два типа явлений – кооперативное, когда в результате сильного взаимодействия между 4f электронами происходит коллективный отклик на внешние воздействия, и некооперативное, когда наблюдается слабое или отсутствие взаимодействия между электронами при внешних воздействиях [17]. Примером кооперативного поведения являются магнитные превращения соединений лантаноидов при низких температурах (<10-20 К), которые происходят в узком интервале температур и вносят дополнительный вклад в величину теплоемкости. Соединения лантана и лютеция не имеют магнитных превращений по причинам отсутствия 4f электронов у первого и полного заполнения 4f оболочки у второго. На рис. L7 приведена аномальная теплоемкость ¹/₂(Dy₂O₃·2ZrO₂) в области магнитного превращения в сравнении с теплоемкостью ¹/₂(Lu₂O₃·2ZrO₂) в этом же температурном интервале [76]. Не проявляет магнитных свойств и ион Eu³⁺, который имеет шесть 4f электронов с результирующим полным угловым моментом J = 0 и, следовательно, является немагнитным [17]. Некооперативным поведением следует считать заселение электронами энергетических уровней, расшепленных под действием кристаллического поля (эффект Штарка). Заселение происходит постепенно по мере возрастания температуры и приводит к дополнительному вкладу в теплоемкость соединений лантаноидов (аномалия Шоттки), рис. L8 [77]. Эта аномалия характерна для всех соединений лантаноидов, также за исключением лантана и лютеция, причем температурная зависимость аномальной теплоемкости является индивидуальным свойством не только иона лантаноида, но и типа кристаллической решетки соединения [78, 79, 80]. В силу особенности электронного строения ион Gd^{3+} выше 25 К не имеет аномалии

Шоттки, так как следующее-возбужденное электронное состояние находится около 32000 см⁻¹ и не способно внести заметного аномального вклада в теплоемкость ниже 350 К [78]. В отличие от магнитных превращений, аномалия Шоттки имеет иную природу и некооперативный характер. При увеличении температуры происходит постепенное заполнение вышележащих электронных уровней, что приводит к проявлению аномальной теплоемкости в виде плавного максимума (bell-like shape в англоязычной литературе). Поскольку энергетические уровни в электронном спектре различных соединений магнитных лантаноидов могут существенно различаться, вид аномальной теплоемкости Шоттки и температура ее максимумов различны. В отличие от магнитных переходов, имеющих кооперативный характер, который определяет относительно узкий температурный интервал их протекания, аномальная теплоемкость Шоттки присутствует во всей температурной области существования вещества, поэтому ее термодинамические характеристики могут оказывать существенное влияние на расчет энергии Гиббса в широком температурном диапазоне.

Так как величина вклада аномалии Шоттки определяется термическим заселением 4*f*электронных уровней, расщепленных под действием электрического поля кристалла, то вклад аномалии Шоттки может быть определен расчетом на основании спектроскопических данных по формуле [78].

$$C_{v}/R = \sum_{i} g_{i} (E_{i}/kT)^{2} \exp(-E_{i}/kT)/Q - \{\sum_{i} g_{i} (E_{i}/kT) \exp(-E_{i}/kT)/Q\}^{2}$$

где E_i энергии Штарковских уровней с кратностью вырождения g_i ; T, k, R и Q-абсолютная температура, константа Больцмана, универсальная газовая постоянная и статсумма (Q = $\sum g_i \exp(-\varepsilon/kT)$), соответственно.

Иной способ оценки аномального вклада Шоттки в широком интервале температур был предложен в работах Веструма [77, 78, 79, 80], при которой измеренная теплоемкость соединений лантаноидов рассматривается как сумма решеточной и аномальной теплоемкости. В этом методе вклад решеточной теплоемкости связан с явлением «лантаноидного сжатия». Существенным условием применения способа Веструма является изоструктурность соединений, поэтому в случае изменения структуры у соединений, расположенных между диамагнитными соединения лантана и лютеция, предлагается использовать данные по теплоемкости соединений гадолиния (в области 25–350 К). Решеточную теплоемкость предлагается рассчитывать исходя из известных температурных зависимостей теплоемкостей диамагнитных соединений лантана и лютеция, или пар лантан-гадолиний и гадолиний лютеций с учетом соответствующих объемов элементарных ячеек. Например, для соединений «легких» лантаноидов

 $C_p(\text{LnX}, \text{lat}) = (1-f) \times C_p(\text{LaX}) + f \times C_p(\text{GdX})$

где Ln-лантаноид от Pr до Eu, X-анион, f- относительное изменение мольного объема

$$f = [V_m(LnX) - V_m(LaX)] / [V(GdX) - V_m(LaX)].$$

Удовлетворительная оценка достоверности расчета решеточной теплоемкости показана в работе [81] на примере ортониобатов лантана, гадолиния и лютеция.

1.4. Заключение по разделу

Двойные оксиды гафния и лантаноидов характеризуются высокими температурами плавления и отсутствием структурных превращений в широком температурном интервале. Несмотря на относительно высокую стоимость, эти вещества представляют практический интерес как основу для создания керамических материалов для атомной промышленности [82], оптики [83, 84], твердотопливных элементов ТОТЭ [85, 86] и др. Наиболее актуальным направлением практического использования этих материалов является разработка термобарьерных И коррозионно-защитных покрытий (TBC – thermal and EBC – environmental barrier coatings) газотурбинных двигателей и энергетических установок в авиации и энергетике [87, 88, 89, 90] благодаря низкой теплопроводности, а также антиокислительных покрытий для углеродуглеродных и карбид-кремниевых композитов [91]. Однако высокотемпературная коррозионная стойкость требует дополнительных исследований и подтверждения, особенно по отношению к оксидам группы CMAS (calcium-magnesium-alumina-silicate), обычно загрязняющим атмосферный воздух [92, 93]. Экспериментальное решение проблемы достаточно затратно и трудоемко, ограничить объем исследований возможно применением математического моделирования [94, 95], но в этом случае необходимо располагать термодинамическими образования, свойствами веществ: энтальпиями температурными зависимостями теплоемкостей, энтропий и приращения энтальпий. Анализ литературы показал, что такие сведения для большинства двойных оксидов гафния и редкоземельных элементов отсутствуют.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Синтез образиов. Двойные оксиды гафния и лантаноидов состава Ln₂O₃:2HfO₂ готовили методом «обратного» осаждения из водных растворов. Для приготовления растворов использовали хлориды или оксиды лантаноидов, предварительно растворенные в соляной кислоте. В отличие от стандартной методики, когда манипуляции проводят на основе молярных концентраций и смешивания растворов по объемам, нами предложен метод моляльных концентраций и смешивания растворов по рассчитанным массам. Методика весового приготовления конечного раствора исходных веществ позволяет использовать более концентрированные растворы и не зависит от температуры окружающей среды. Моляльную концентрацию исходных растворов определяли осаждением водным раствором аммиака пробы 5 г раствора хлорида, промывкой, обезвоживанием при 105°C, отжигом при 1000°C и взвешиванием. Растворы хлоридов гафния и лантаноида взвешиванием смешивали в стехиометрическом соотношении и по каплям вливали в раствор аммиака при интенсивном перемешивании. Полученный осадок гидроксидов отмывали дистиллированной водой на фильтре, обезвоживали при 105°С, перетирали и затем ступенчато отжигали. Температуры промежуточных ступеней отжига определяли на основе анализа кривых ДСК/ТГ обезвоженной исходной смеси гидроксидов, которые были получены на установке синхронного термического анализа STA 449F1 Jupiter Netzsch в атмосфере газообразного аргона высокой чистоты (99.995%). Окончательный отжиг проводили при температуре 1550 -1600°С в течение 4 ч на воздухе для полного взаимодействия компонентов, удаления летучих примесей и формирования кристаллической структуры. Температурно-временные параметры синтеза были определены ранее при синтезе двойных оксидов лантаноидов и циркония [96].

2.2. <u>Идентификация образцов</u>. Синтезированные образцы подвергали дифракционным исследованиям (РФА) с помощью дифрактометра Bruker D8 Advance (CuK_{α}, λ =1.5418 Å, Niфильтр, LYNXEYE детектор, геометрия на отражение) в интервале углов 2 θ = 10° – 80°. Результаты исследования обрабатывали программой BrukerEVA с использованием базы данных ICDD PDF-2. Уточнение параметров элементарных ячеек выполнено методом полнопрофильного анализа с помощью программы TOPAS.

Состав образца определяли химическим анализом (оптико-эмиссионный спектрометр с индуктивно-связанной плазмой Agilent 725, ВНИИХТ). Морфологию образцов и их чистоту исследовали с помощью электронного микроскопа электронный микроскоп TESCAN Amber, ЦКП ИОНХ РАН.

2.3. <u>Измерение теплоемкости</u>. Измерения теплоемкости синтезированных образцов проводили методом релаксационной (2 – 35 K), адиабатической (6 – 350 K) и дифференциальной сканирующей калориметрии (310 – 1800 K).

Релаксационная калориметрия. Измерения молярной теплоемкости образцов двойных оксидов гафния и лантаноидов проводили на установке PPMS-9 (Quantum Design Physical Property Measurement System 9, USA) в интервале температур 2 – 35 К. Относительная неопределенность измерения теплоемкости в этом диапазоне температур составляет около 2-5% по данным изготовителя [97, 98]. Масса используемых для измерений образцов равнялась 5 – 10 мг. Для измерений удельной теплоемкости в основе системы PPMS применяется усовершенствованный релаксационный метод. Между тепловым резервуаром и образцом существует связь, посредством которой в данной системе устанавливается тепловое равновесие. При повышении температуры образца на величину ΔT по сравнению с температурой резервуара, а затем прекращения нагревания, процесс изменения температуры образца с течением времени в системе «образец-резервуар» при реализации определенных условий, накладываемых на связь между элементами, может быть описан уравнением [99]

$$\Delta T(\tau) = Aexp(-t/\tau_1) + Bexp(-t/\tau_2)$$

В этом уравнении: A и B – свободные параметры, t – время, $\tau_1 = C/k$ - время релаксации в подсистеме «образец-связь», определяющееся теплопроводностью k и теплоемкостью образца C в этой подсистеме, τ_2 – время релаксации в подсистеме «связь-резервуар».

В случае, если между образцом и измерительной ячейкой имеется плохой термический контакт, приводящий к разнице температур между ячейкой и образцом, необходимо использовать модель с двумя *τ*, имитирующую эффект теплового потока между ячейкой и образцом, а так же между шайбой и ячейкой, выражающуюся в уравнениях:

 $C_{platform}dT_p/dt = P(t) - k_w(T_p(t) - T_b) + k_g(T_s(t) - T_p(t)),$

 $C_{sample}dT_s/dt = -k_g(T_s(t) - T_p(t))$,

где, $C_{platform}$ - теплоемкость измерительной платформы, C_{sample} - теплоемкость образца, k_g - теплопроводность между ними с учетом смазки.

Анализ экспериментальных данных на основе приведенного уравнения называется моделью «два-тау», эта модель положена в основу автоматической обработки результатов системой PPMS [98]. Для определения погрешностей измерения методом релаксационной калориметрии выполнены измерения теплоемкости меди особой чистоты и показано, что в интервале 1-35 К отклонение от принятой в [100] величины теплоемкости меди не превышает 1.5%.

Следует отметить, что на точность получаемых в этом методе величин теплоемкости могут оказывать существенное влияние теплопроводность образца, связанная, в том числе, с пористостью, и вызывающая градиент температуры, поэтому рекомендуется делать максимально плотные тонкие таблетки. С другой стороны, уменьшение толщины образца может привести к увеличению ошибок при взвешивании.

Для проведения измерений порошки исследуемых оксидов прессовали в таблетки диаметром 3.0 мм и массой 10-20 мг. Таблетки отжигали при температуре 1500°С для снятия напряжений и спекания, охлаждали в режиме выключенной печи. Предварительно проводили калибровку датчика измерительной платформы установки PPMS-9 по определению температуры, затем проводили измерение теплоемкости платформы с нанесенной вакуумной смазкой «ApiezonH» для последующего приклеивания таблетки с целью обеспечения теплового контакта и неподвижности таблетки. После подготовительных манипуляций таблетку образца плотно приклеивали к платформе, помещали в установку и проводили измерения теплоемкости в автоматическом режиме с понижением температуры от 40 К и заданном количестве точек (обычно 30).

<u>Адиабатическая калориметрия</u>. Измерения теплоемкости проводили в автоматическом адиабатическом калориметре БКТ-3 с использованием жидкого гелия и азота в качестве криогенных жидкостей. Измеряемое вещество помещали в тонкостенную цилиндрическую титановую ампулу ($V_{shymp} \approx 1 \text{ см}^3$). Герметизацию контейнера выполняли в атмосфере гелия при давлении $\approx 50 \text{ кПа}$ с использованием индиевой прокладки. Температуру калориметра измеряли железо-родиевым термометром сопротивления ($R \approx 100 \text{ Ом}$), калиброванным во ВНИИФТРИ (шкала ITS-90). Чувствительность термометрической схемы составляла 1·10⁻³ K, абсолютная погрешность измерений температуры $\pm 5\cdot10^{-3}$ K. Конструкция и принцип работы калориметра описаны в работе [101]. Качество выполняемых измерений было проверено измерениями теплоемкости меди особой чистоты, синтетического корунда и бензойной кислоты марки K-2. По результатам калибровки и поверки калориметра установлено, что погрешность измерений температуры $\pm 0.4\%$ при повышении температуры до 40 K и равна 0.2% в области 40-350 K.

<u>Дифференциальная сканирующая калориметрия</u>. Термический анализ и измерение теплоемкости образцов в интервале 310-1800 К проводили на дифференциальном сканирующем калориметре DSC 404 F1 Pegasus (далее – Pegasus) фирмы NETZSCH-Gerätebau GmbH (ЦКП ИОНХ РАН). Калибровку по температуре и чувствительности проводили измерением плавления стандартных образцов металлов в тиглях из платины-родия с крышкой и вкладышем из Al₂O₃. По результатам калибровки погрешности составили 0.3 К по температуре и 0.2% по энтальпии. Теплоемкость определяли методом отношений по формуле:

$$c_p = \frac{m_{\text{ref}}}{m_{\text{sample}}} \cdot \frac{DSC_{\text{sample}} - DSC_{\text{bas}}}{DSC_{\text{ref}} - DSC_{\text{bas}}} \cdot c_{p,ref},$$

где m_{ref} и m_{sample} – массы вещества сравнения (стандарта) и исследуемого образца; DSC_{sample}, DCS_{ref} и DSC_{bas} – сигнал ДСК при измерении исследуемого образца, образца сравнения и тигля без образца, соответственно; $c_{p,ref}$ – удельная теплоемкость вещества сравнения. Расчет теплоемкости, а также аппроксимацию уравнением Майера-Келли [102] проводили с помощью программного обеспечения установки термического анализа. По результатам поверки прибора по теплоемкости сапфира, использованного в качестве вещества сравнения, погрешность измерений теплоемкости установки в основном не превышала 2.5 % от справочных данных [103]. Максимальную погрешность от 1.4 до 3.0 % наблюдали в интервале измерений от 1300 (начало светимости образца) до 1800 К.

2.4. Математическая обработка результатов измерения теплоемкости. Математическая обработка результатов измерений теплоемкости заключалась в согласовании данных, полученных разными методами и сглаживании экспериментальных точек. Так как наибольшей точностью характеризуются результаты адиабатических измерений, то привязку данных релаксационного метода при необходимости осуществляли их варьированием в пределах доверительного интервала (5%), а результатов дифференциальной сканирующей калориметрии – в пределах 2.5%. Сглаживание экспериментальных результатов проводили с помощью специальных программ обработки: в области самых низких температур (0 -20/30 K) использовали полиномы разных степеней, суммы степенных функций $C_p = \sum_{i=1}^n A_i T^i$, линейную

комбинацию ортонормированных полиномов [104]: $C_p = \Sigma A_i \times [1 - \exp(-0.001 \times T)]^i$ или $C_p = \sum_{i=1}^m A_j U^j$,

где U= ln(T/400) [105], сглаживание результатов измерений при более высоких температурах осуществляли с помощью программы CpFit [106, 107]. Такой подход связан с индивидуальным характером температурных зависимостей теплоемкости двойных гафнатов лантаноидов, определяемым вкладом аномалии Шоттки в широком интервале температур, а в области самых низких температур – магнитными превращениями, в некоторых случаях и дополнительным вкладов аномалии Шоттки. По этой причине подбирали наиболее адекватное сочетание сглаживающих функций.

2.5. <u>Температурные зависимости параметров кристаллических ячеек</u> синтезированных двойных оксидов изучали методом высокотемпературной дифракции порошков с помощью дифрактометра Shimadzu с приставкой HA-1001 для проведения высокотемпературных исследований в области 298-1273 К на излучении CuK_α, λ =1.5418 Å. Скорость нагрева составляла 5 К/мин с выдержкой в течение 20 мин при постоянной температуре. Измерения проводили с шагом сканирования $\theta = 0.02^{\circ}$ [108].

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для проведения исследований синтезировано 13 порошкообразных образцов двойных оксидов состава Ln_2O_3 :2HfO₂, в том числе 7 гафнатов лантаноидов $Ln_2Hf_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb) структурного типа пирохлора (*Fd3m*) и 7 твердых растворов стехиометрического состава со структурой дефектного флюорита (*Fm3m*) Ln_2O_3 ·2HfO₂ (Ln = Dy, Ho, Er, Tm, Yb, Lu). Образцы идентифицированы методами рентгенофазового анализа и показаны отсутствие посторонних фаз, удовлетворительная закристаллизованность и соответствие структурных параметров литературным данным. Морфологические электронно-микроскопические исследования поверхности показали, что образцы состоят из кристаллических блоков с размерами >100-200 нм, а химический анализ подтвердил практически стехиометрическое соотношение металлов Ln:Hf = 1:1 в синтезированных образцах (Табл.1). Таким образом, как результаты измерения теплоемкости, так и расчета термодинамических функций не требуют внесения поправок на отклонения от стехиометрии и размерный фактор.

Таблица	1.	Состав	И	параметры	кубических	решеток	синтезированных	образцов	двойных
оксидов л	ан'	таноидо	ви	гафния.					

Образец	Состав (±0.05),	Параметр	Тип структуры	
	мол.% 2HfO ₂	решетки <i>а</i> , Å		
La ₂ Hf ₂ O ₇	49.94	10.772(1)	пирохлор	
Pr ₂ Hf ₂ O ₇	50.74	10.671(9)	пирохлор	
Nd ₂ Hf ₂ O ₇	49.95	10.651(3)	пирохлор	
$Sm_2Hf_2O_7$	49.53	10.580(9)	пирохлор	
Eu ₂ Hf ₂ O ₇	49.96	10.541(4)	пирохлор	
Gd ₂ Hf ₂ O ₇	49.91	10.513(9)	пирохлор	
Tb ₂ Hf ₂ O ₇	49.69	10.455(4)	пирохлор	
Dy ₂ O ₃ ·2HfO ₂	50.00	5.215(2)	флюорит	
Ho ₂ O ₃ ·2HfO ₂	50.20	5.198(7)	флюорит	
Er ₂ O ₃ ·2HfO ₂	50.15	5.185(1)	флюорит	
Tm ₂ O ₃ ·2HfO ₂	50.24	5.170(7)	флюорит	
Yb ₂ O ₃ ·2HfO ₂	49.97	5.157(1)	флюорит	
Lu ₂ O ₃ ·2HfO ₂	50.00	5.146(2)	флюорит	

3.1. <u>Лантана гафнат</u> [109, 110]. Для проведения измерений был получен однофазный образец гафната лантана, который по результатам дифракционных исследований (рис. S1.1) имел

структуру пирохлора с параметром кубической решетки *a*=10.772(1) Å, хорошо совпадающим с рекомендованным в кристаллографической базе данных значением (*a*=10.7728(3) Å) [111]. Образец представлял плотную хорошо сформированную структуру, состоящую из кристаллических блоков с размерами >100-200 нм (рис. S1.2).

Измерения теплоемкости выполнены методами релаксационной в интервале 2.084 – 65.03 К (34 точки), адиабатической в области 8.26 – 325.0 К (125 точек) и дифференциальной сканирующей калориметрии в 149 точках при 318.0 – 1798 К. Экспериментальные данные приведены в Приложении в таблице \$1.1 и показаны на рис.3.1.1.

Рис.3.1.1. Экспериментальная теплоемкость La₂Hf₂O₇ в области температур до 1800 K, данные: l – релаксационной, 2 – адиабатической и 3 – дифференциальной сканирующей калориметрии; 4 - аппроксимация. На врезках: a) область температур 0 – 35 K, δ) область перехода от данных адиабатической к результатам дифференциальной сканирующей калориметрии (310 - 350 K).

Экспериментальные данные, полученные релаксационной (1) и адиабатической (2) калориметрией в области гелиевых температур, удовлетворительно согласуются между собой (рис. 3.1.1.*a*)), также как и результаты адиабатической и дифференциальной сканирующей калориметрии (рис. 3.1.1.*б*)).

Экстраполяция к 0 К выполнена полиномом 7-степени (4), наиболее адекватно описывающем экспериментальные результаты (R² = 0.99997) в интервале 2 – 30 К. В пересекающихся интервалах температур 20 -100, 77 – 330 и 320 – 1800 К экспериментальные данные сглажены с помощью уравнения CpFit [106, 107]. Термодинамические функции рассчитаны в широком температурном диапазоне, табл.2. Параметры сглаживающих функций приведены в табл. S1.2

T	C _p	S(T)	H(T)-H(0 K)
K	Дж/(моль•К)	Дж/(моль•К)	Дж/моль
1	0.0063	0.00216	0.00166
2	0.0133	0.00456	0.00701
3	0.0205	0.00703	0.0162
4	0.0288	0.00985	0.0303
5	0.0405	0.0139	0.0533
6	0.0602	0.0206	0.0951
7	0.0938	0.0321	0.173
8	0.1486	0.0509	0.313
9	0.2333	0.0799	0.553
10	0.357	0.122	0.939
12	0.758	0.260	2.393
14	1.417	0.485	5.221
16	2.378	0.814	10.01
18	3.651	1.250	17.29
20	5.198	1.780	27.36
25	10.42	3.568	68.55
30	16.19	5.545	127.8
35	22.25	8.499	223.5
40	28.61	11.88	350.6
45	35.26	15.63	510.1
50	42.09	19.70	703.5
60	55.78	28.59	1193
70	68.89	38.18	1817

Таблица 2. Термодинамические функции La₂Hf₂O₇ в области 0-1800 К.

75	75.13	43.15	2177
80	81.15	48.19	2568
90	93.20	58.45	3759
100	104.2	68.85	4747
110	114.4	79.26	5840
120	123.9	89.63	7033
130	133.0	99.91	8318
140	141.6	110.1	9691
150	149.7	120.1	11150
160	157.4	130.0	12680
170	164.7	139.8	14300
180	171.6	149.4	15980
190	178.0	158.9	17730
200	184.1	168.2	19540
210	189.7	177.3	21410
220	194.9	186.2	23330
230	199.8	195.0	25300
240	204.4	203.6	27320
250	208.6	212.0	29390
260	212.5	220.3	31490
270	216.2	228.4	33640
280	219.6	236.3	35820
290	222.8	244.1	38030
298.15	225.2	250.3	39860
300	225.7	251.7	40270
310	228.5	259.1	42540
320	231.0	266.4	44840
330	233.4	273.6	47160
340	235.7	280.6	49510
350	237.6	287.4	51880
400	246.6	319.8	63990
450	253.1	349.2	76490
500	257.9	376.1	89270
600	264.7	423.8	115400
700	269.5	465.0	142100
800	273.5	501.2	169300
900	277.2	533.6	196800

1000	280.7	563.0	224700
1100	284.1	590.0	253000
1200	287.3	614.8	281500
1300	290.4	637.9	310400
1400	293.2	659.6	339600
1500	295.9	679.9	369700
1600	298.3	699.0	398800
1700	300.5	717.2	428700
1800	302.6	734.4	458900

здесь и далее: курсивом выделены расчетные значения;

Сравнение полученной температурной зависимости изобарной теплоемкости гафната лантана с измерениями, выполненными авторами [28], показало, что данные последней завышены в области 250-300 К и несколько ниже наших значений при температурах < 75 К.

Измерения молярной теплоемкости методом дифференциальной сканирующей калориметрии выполнены в интервале температур 318 – 1798 К и показаны на рис. 3.1.2 вместе с доверительным интервалом (для метода ДСК он составляет ~2.5%) (1). Полученные результаты хорошо описываются уравнением Майера-Келли (2) [102]:

 $C_{\rm p}(\mbox{Дж/(моль·K)}) = 261.42 + 0.025582905 \times T - 3912580.7/T^2$ ${\rm R}^2 = 0.9984$

На рис.3.1.2 также показана оценка теплоемкости La₂Hf₂O₇ по правилу Неймана-Коппа из теплоемкостей индивидуальных оксидов La₂O₃ [112] и HfO₂ [113] (*3*):

 $C_{\rm p}(\mbox{Д}\mbox{{\rm ж}}/(\mbox{{\rm моль-K}})) = 263.15 + 0.0329683 \times T - 3878855.8/T^2$

и приведен результат расчета из экспериментальных измерений приращения энтальпии в интервале 988-1773 К [31] (4):

$$C_{\rm p}(\mbox{Д} \mbox{{\rm ж}}/(\mbox{{\rm моль}} \mbox{{\rm K}})) = 237.08 + 0.054532 \times T - 2135800/T^2$$

а также результаты ДСК исследований теплоемкости (кривая 5) из работы [32]:

$$C_{\rm p}(\mbox{Д} {\rm ж}/({\rm моль} \cdot {\rm K})) = 111.94 + 0.57 \times T - 7.60 \times 10^{-4} \times T^2 + 3.38 \times 10^{-7} \times T^3$$

Температурную зависимость теплоемкости также измеряли методом ДСК в [29], однако приведенное в этой работе аналитическое выражение содержит явные опечатки, не соответствует графическому изображению и не поддается сравнению с другими данными.

Рис.3.1.2. Температурная зависимость теплоемкости гафната лантана (пирохлор): *1,2* – настоящая работа, *3* – расчет по Нейману-Коппу из теплоемкостей La₂O₃ [110] и HfO₂ [111], *4* – данные [31], *5* – результаты работы [32].

Как видно из рис.3.1.2, кривая расчета по Нейману-Коппу (3) располагается практически параллельно и выше экспериментальной теплоемкости, начиная со значения 229.3 Дж/моль·К при 298 К, которое отличается от экспериментального значения $C_p(Дж/(моль·K), 298.15 \text{ K}) = 225.2 Дж/(моль·K))$, найденного нами методом адиабатической калориметрии, табл.S1.1. Рассчитанное по Нейману-Коппу значение теплоемкости использовано в работе [31] при расчете теплоемкости из приращения энтальпии H_T° - $H_{298.15}$. Как показано далее, при анализе теплоемкости гафната неодима, дифференцирование приращения энтальпии не всегда дает удовлетворительный результат. Необходимо отметить что, хотя кривая 4 до 1000 К находится в пределах доверительного интервала наших данных, она является более крутой, что при экстраполяции в область более высоких температур может внести существенные искажения в расчеты.

Общий вид кривой температурной зависимости теплоемкости в области 2 – 1800 К имеет гладкую S-образную форму, что свидетельствует об отсутствии структурных превращений в изученном диапазоне температур.

3.2. <u>Празеодима гафнат</u> [114, 115]. Дифракционные исследования, рис.S.2.1 Приложения, показали, что синтезированный однофазный образец $Pr_2Hf_2O_7$ имеет кубическую структуру типа пирохлора с параметром решетки a = 10.671(9) Å, который удовлетворительно соответствует данным [37]. Оценка размера областей когерентного рассеяния поДебаю-Шереру, исходя их ширины дифракционных рефлексов, и результаты растровой электронной микроскопии (рис.S2.2) показали, что образец хорошо закристаллизован и не является наноразмерным.

Молярная теплоемкость гафната празеодима измерена методом релаксационной (1) в 24 точках в интервале температуры 2.9 – 35.0 K, адиабатической (2) в 135 точках в диапазоне 4.6 – 338.4 К и дифференциальной сканирующей (3) калориметрии в 150 точках в области температур 317-1807 K, табл.S2.1, рис.3.2.1. Из приведенного рисунка видно удовлетворительное взаимное соответствие результатов измерений теплоемкости, полученных разными методами. Температурная зависимость теплоемкости гафната празеодима имеет гладкий S-образный вид и при температурах выше ~20 K не содержит признаков структурных переходов.

Экспериментальные данные по температурной зависимости теплоемкости гафната празеодима в интервале 3.0 - 345 K сглажены с использованием линейной комбинации ортонормированных полиномов [104]: $C_p = \sum A_i \times [1 - \exp(-0.001 \times T)]^i$, коэффициенты которых приведены в табл. S2.3. Оценка теплоемкости в интервале 0 - 3 K проведена с дополнительным использованием графических данных работы [37] в предположении отсутствия аномалий в области 0 - 0.5 K, рис. 3.2.2.

Рис.3.2.1. Экспериментальная теплоемкость Pr₂Hf₂O₇ в области температур до 1800 К, данные: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии. На врезке – интервал стыковки результатов адиабатической и дифференциальной сканирующей калориметрии (310 – 360 К).

Низкотемпературная область (0 – 20 K), рис.3.2.2, характеризуется вполне ожидаемым аномальным поведением теплоемкости $\Pr_2Hf_2O_7$, которое впервые было экспериментально зафиксировано в работах [37, 38, 39, 40]. На рисунке представлены экспериментальные значения теплоемкости, полученные нами методами адиабатической (1), релаксационной (2) калориметрии и данные (3), приведенные в работе [37] в графическом виде. Все три типа данных, как видно, хорошо согласуются между собой. Кривая теплоемкости характеризуется максимумом при ~2 K и минимумом при ~8.6 – 8.8 K. Для сравнения там же приведена полученная нами (раздел 3.1) температурная зависимость теплоемкости гафната лантана,

которая определяется практически только решеточной составляющей *C*_{lat}, так как аномальные явления у La₂Hf₂O₇ отсутствуют [77].

Рис.3.2.2. Теплоемкость гафната празеодима в области 0 – 25 К: *1* – адиабатическая калориметрия, *2* – релаксационная калориметрия, *3* – данные [38], *4* – теплоемкость La₂Hf₂O₇ (3.1)

Как видно из рис.3.2.2, теплоемкость гафната празеодима заметно превышает теплоемкость $La_2Hf_2O_7$ и, хотя атомная масса празеодима выше, чем лантана, уменьшение объема элементарной ячейки за счет лантаноидного сжатия должно приводить к уменьшению теплоемкости. Это заставляет предполагать существование аномалии Шоттки, так как магнитное превращение происходит в узкой области температур и его вклад теплоемкость в

области температуры около 20 К и выше практически отсутствует [17]. В соединениях празеодима различного состава и структуры в области самых низких температур могут наблюдаться различные явления: переход из одного магнитного состояния в другое с завершенной переориентацией спинов (например, антиферро-парамагнетик у фосфата гадолиния [116]), переход в состояние спинового льда (Pr₂Sn₂O₇ [117]), аномалия Шоттки (напр., в Pr(OH)₃) [118]), которые характеризуются различной избыточной энтропией. Полученное нами значение энтропии (27.57 Дж/(моль-К)) при 20 К подтверждает мнение авторов [119], обнаруживших аналогичную аномалию в случае Pr(OH)₃ и считаюших ее суперпозицией антиферромагнитной аномалии и аномалии Шоттки - проявления взаимодействия 4f – электронной оболочки с кристаллическим полем $Pr(OH)_3$. Кроме того, в [37, 38, 39, 40] обсуждается возможность образования спинового льда у Pr₂Hf₂O₇. Однако прямых доказательств существования спинового льда у гафната празеодима также как и у Pr₂Zr₂O₇ [120] пока не найдено.

Вклад аномалии Шоттки в теплоемкость $Pr_2Hf_2O_7$ однозначно обнаруживается и при более высоких температурах, чем 20 К.Определить общий вид температурной зависимости избыточной теплоемкости C_{exc} можно двумя путями [77, 121]. Первый – расчет избыточной теплоемкости по частотам электронных уровней из спектроскопических данных [17, 77] и, второй – предварительной оценкой решеточной теплоемкости C_{lat} и вычитанием ее из измеренной теплоемкости [79]:

$$C_{exc} \approx \Delta C_p = C_p - C_{lat}$$

Как было отмечено выше, решеточная теплоемкость гафната празеодима приблизительно совпадает с теплоемкостью гафната лантана $C_{lat} \approx C_p(\text{La}_2\text{Hf}_2\text{O}_7)$ и определить общий вид аномального вклада в теплоемкость можно по разности:

$$C_{esc} \approx \Delta C_p = C_p(\Pr_2 Hf_2 O_7) - C_p(La_2 Hf_2 O_7)$$

Общий вид аномального вклада Шоттки в теплоемкость приведен на рис.3.2.3.

Похожее поведение избыточной теплоемкости наблюдается для Pr₂O₃ [122] и PrPO₄ [123].

Для описания теплоемкости при более высоких температурах использовали программу CpFit [106, 107]. Параметры сглаживающих функций приведены в таблице S2.2.

С учетом особенностей низкотемпературного поведения теплоемкости рассчитаны термодинамические функции гафната празеодима в интервале 0 – 1800 K, табл.3.

Рис.3.2.3. Избыточная теплоемкость Pr₂Hf₂O₇, рассчитанная как разность экспериментальной и решеточной теплоемкости Pr₂Hf₂O₇.

T K	С _р Дж∕(моль∙К)	<i>S(T)</i> Дж/(моль·К)	<i>Н(Т)-Н</i> (0 К) Дж/моль
0.1	0.42	2.100	0.021
0.2	0.84	4.200	0.084
0.3	1.26	6.300	0.19
0.4	1.7	8.425	0.34
0.5	2.1	10.53	0.53
0.6	2.5	12.61	0.76

Таблица 3. Сглаженная теплоемкость и термодинамические функции гафната празеодима (пирохлор).

0.7	2.8	14.61	1.02
0.8	2.95	16.45	1.31
0.9	3.04	18.14	1.61
1	3.16	19.72	1.92
1.2	3.24	21.07	2.56
1.4	3.27	22.24	3.21
1.6	3.26	23.26	3.87
1.8	3.27	24.17	4.52
2	3.26	24.98	5.17
2.5	3.1	25.60	6.76
3	2.917	26.09	8.276
4	2.603	26.41	11.04
5	2.322	26.64	13.50
6	2.091	26.82	15.70
7	1.923	26.96	17.71
8	1.829	27.07	19.59
9	1.817	27.17	21.41
10	1.891	27.27	23.27
15	3.624	27.39	36.15
20	7.458	27.57	63.10
25	12.88	29.80	113.4
30	19.28	32.70	193.5
35	26.16	36.18	307.0
40	33.16	40.13	455.3
45	40.08	44.44	638.4
50	46.83	49.01	855.8
60	59.80	58.71	1389
70	72.29	68.87	2050
80	84.50	79.32	2834
90	96.42	89.96	3739
100	107.9	100.7	4761
110	118.8	111.5	5895
120	129.0	122.3	7135
130	138.6	133.0	8474
140	147.6	143.6	9906
150	156.1	154.1	11430
160	164.2	164.5	13030
170	171.7	174.6	14710
180	178.7	184.7	16460
190	185.3	194.5	18280
200	191.3	204.2	20160

210	196.9	213.6	22100
220	202.3	222.9	24100
230	207.4	232.0	26150
240	212.3	240.9	28250
250	21700	249.7	30390
260	221.4	258.3	32590
270	225.6	266.7	34820
280	229.4	275.0	37100
290	233.0	283.1	39410
298.15	235.9	289.6	41320
300	236.5	291.1	41760
310	240.0	298.9	44140
320	243.3	306.6	46560
330	246.1	314.1	49000
340	248.5	321.5	51480
350	250.7	328.7	53970
400	259.7	362.8	66740
450	266.1	393.8	79900
500	271.0	422.1	93330
550	274.9	448.1	107000
600	278.1	472.2	120800
650	281.0	494.6	134800
700	283.7	515.5	148900
750	286.2	535.1	163200
800	288.7	553.7	177500
850	291.1	571.3	192000
900	293.4	588.0	206600
950	295.8	603.9	221400
1000	298.1	619.1	236200
1100	302.5	647.7	266200
1200	306.7	674.3	296700
1300	310.7	699.0	327600
1400	314.3	722.1	358800
1500	317.6	743.9	390400
1600	320.6	764.5	422300
1700	323.4	784.0	454500
1800	325.8	802.6	487000

Температурную зависимость теплоемкости в интервале 317 – 1807 К также можно представить в виде уравнения Майера-Келли:

На рис.3.2.4 для сравнения приведены сглаженные зависимости теплоемкости гафнатов празеодима (1) и лантана (3) при температурах 320 – 1800 К, а также расчет теплоемкости Pr₂Hf₂O₇ по Нейману-Коппу (2) из теплоемкостей простых оксидов Pr₂O₃ и HfO₂ [112, 113]. Как и в случае гафната лантана (рис.3.1.2), расчет теплоемкости дает завышенные значения, выходящие за пределы доверительного интервала наших высокотемпературных измерений.

Рис.3.2.4 Высокотемпературные теплоемкости гафната празеодима (1), гафната лантана (3) и расчет теплоемкости гафната празеодима по Нейману-Коппу (2)

Видно, что высокотемпературные теплоемкости $Pr_2Hf_2O_7$ и La₂Hf₂O₇ значительно отличаются. Это трудно объяснить только различием в мольных массах гафнатов лантана и празеодима, которое составляет ~0.3 %, и с учетом того, что уменьшение параметра кристаллической решетки $Pr_2Hf_2O_7$ (a = 10.671(9) Å) по сравнению с La₂Hf₂O₇ (a = 10.772(1) Å) должно привести к понижению теплоемкости. Следует полагать, что увеличение теплоемкости гафната празеодима возникает за счет вклада аномалии Шоттки, оценить которую можно по разности теплоемкостей гафнатов празеодима и лантана [77]:

 $C_{Sch} \approx \Delta C_p = C_p(\Pr_2 Hf_2 O_7) - C_p(La_2 Hf_2 O_7)$

 $\Delta C_p (Дж/(моль·K)) = 1.5 + 0.0091369 \times T - 216760.7 \times T^2$

что составляет от ~2.2 (315 K) до ~17.9 (1800 K) Дж/(моль·К).

3.3. <u>Неодима гафнат</u> [124]. Синтезированный гафнат неодима по данным РФА имел кубическую структуру (пр.гр. *Fd3m*, пирохлор) с параметром кристаллической решетки *a* = 10.651±0.003 Å при комнатной температуре, рис.S3.1. Полученный образец не является наноразмерным, что подтверждается видом дифракционных отражений и оценкой по Шереру размеров областей когерентного рассеяния (> 100 нм), рис.S3.1, а также электронно-микроскопическими исследованиями, рис.S3.2.

Измерения теплоемкости образца гафната неодима были выполнены в 30 экспериментальных точках методом релаксационной (1) калориметрии в области 2.43 – 34.9 К, 120 экспериментальных точках в интервале температур 6.2 - 320 К методом адиабатической (2) калориметрии, и в интервале 317-1807 К теплоемкость Nd₂Hf₂O₇ получена методом ДСК (3) в150 точках. Результаты приведены в табл.S3.1 и на рис.3.3.1. Температурная зависимость теплоемкости при высоких температурах может быть представлена в виде уравнения Майера-Келли

 $C_{\rm p}(\mbox{Д}\mbox{ж/(моль·K)}) = 261.3 + 0.0399579 \times T - 3711461.3/T^2$, $\mbox{R}^2 = 0.9989$

Экспериментальные значения теплоемкости в области стыковок данных, полученных разными методами, удовлетворительно согласуются между собой. Температурная зависимость теплоемкости имеет обычный вид и не содержит признаков структурных превращений.

В области самых низких температур наблюдается минимум теплоемкости при температуре ~ 6 К, величина его по данным адиабатической калориметрии составляет 0.28 Дж/(моль·К), что удовлетворительно соответствует выполненным в работе измерениям [45]. Дальнейшее понижение температуры приводит к увеличению теплоемкости, которое обусловлено магнитным превращением при 0.55 К, что было подтверждено магнитными измерениями. К сожалению, данные работы [45] приведены только в виде графика и не могут быть использованы в дальнейших расчетах. Влияние магнитной аномалии на приращение энтальпии

 $H^{\circ}(T)$ - $H^{\circ}(0)$ при температурах вблизи 0 К невелико и сравнимо с общей погрешностью определения, в то время как вклад в абсолютную энтропию может быть значительным. Так, величина этого вклада в случае изоструктурного соединения – цирконата неодима - в работах [125, 126] оценена как $\Delta S = 2R \ln 2 \approx 11.53 \text{ Дж/(моль·K)}$.

Рис.3.3.1. Экспериментальная теплоемкость гафната неодима (пирохлор) по данным: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии. На врезках – область самых низких температур (0-35 K) и стыковки результатов адиабатических и ДСК измерений (300 -330 K).

Рис.3.3.2 Молярная теплоемкость Nd₂Hf₂O₇ в области низких температур по данным: 1 - релаксационной и 2 - адиабатической калориметрии; 3 - оценка решеточной теплоемкости по уравнению кубов Дебая, 4 - аппроксимация теплоемкости полиномом 5-ой степени. На врезке - линейная зависимость $C_p/T = 0.0007084T^2$.

На рис.3.3.2 представлены экспериментальные результаты измерения теплоемкости Nd₂Hf₂O₇ в области температур 2.5 – 25 К. Данные, полученные методами релаксационной и адиабатической калориметрией, сглажены полиномом 5-ой степени, и его коэффициенты приведены в приложении S3.2. Магнитное превращение является кооперативным процессом, и его вклад в теплоемкость становится незначительным при температурах >15-20 K [45]. При отсутствии дополнительного наложения аномалии Шоттки в низкотемпературной области общая величина энтропии будет определяться вклада аномалии Шоттки следует из того, что в интервале 18 – 25 K температурное поведение теплоемкости подчиняется закону кубов Дебая и описывается зависимостью $C_{p,lat} = 0.0007084T^3$ (врезка на рис.3.3.2), т.е. при 18 K и выше магнитное превращение не оказывает заметного влияния на теплоемкость, также как и 43

аномалия Шоттки. Расчет энтропии при 18 К дает значение $S = \int_0^{18} \frac{Cp, lat}{T} dT + 2 \text{Rln2} \approx 12.90$ Дж/(моль·К). Полученная величина энтропии является приблизительной, так как экспериментально определенная энтропия магнитного превращения обычно оказывается несколько ниже (на ~ 5%) величины 2Rln2, вероятно, из-за несовершенства кристаллической фазы [127]. Расчет термодинамических функций, содержащихся в табл.4, выполнен с учетом рассчитанной энтропии и выполненного сглаживания теплоемкости выше 25 К программой CpFit [106, 107], параметры которой приведены в табл.S3.2

Τ	C _p	S(T)	H(T)-H(0 K)
K	Дж/(моль·К)	Дж/(моль·К)	Дж/моль
2.5	1.038	9.463	0.346
3	0.916	9.678	0.488
4	0.705	9.893	1.294
5	0.54.	10.11	1.914
6	0.434	10.32	2.398
7	0.382	10.54	2.801
8	0.388	10.75	3.180
9	0.456	10.97	3.597
10	0.588	11.18	4.114
12	1.051	11.61	5.709
14	1.789	12.04	8.503
16	2.809	12.47	13.05
18	4.110	12.90	19.93
20	5.688	13.41	29.68
25	10.76	15.20	70.16
30	17.14	17.71	139.5
35	23.96	20.85	241.9
40	31.35	24.53	380.0
45	39.13	28.67	556.1
50	47.09	33.20	771.6
55	55.06	38.06	1027
60	62.93	43.19	1322
65	70.62	48.53	1656
70	78.10	54.04	2028
75	85.36	59.68	2437
80	92.37	65.41	2881
85	99.13	71.22	3360
90	105.6	77.07	3872
95	111.9	82.95	4416
100	117.9	88.84	4990
110	129.2	100.6	6226
120	139.5	112.3	7570

. Таблица 4. Сглаженная теплоемкость и термодинамические функции гафната неодима.

130	148.9	123.8	9012
140	157.5	135.2	10550
150	165.3	146.3	12160
160	172.5	157.2	13850
170	179.2	167.9	15610
180	185.3	178.3	17430
190	190.9	188.5	19310
200	196.2	198.4	21250
210	201.1	208.1	23230
220	205.7	217.6	25270
230	209.9	226.8	27350
240	213.9	235.8	29470
250	217.7	244.6	31630
260	221.2	253.2	33820
270	224.5	261.6	36050
280	227.6	269.9	38310
290	230.6	277.9	40600
298.15	232.8	284.3	42490
300	233.3	285.8	42920
310	236.0	293.5	45270
320	238.4	301.0	47640
330	240.7	308.4	50040
340	242.9	315.6	52450
350	245.0	322.7	54890
400	253.9	356.0	67380
500	266.3	414.1	93430
600	275.0	463.4	120500
700	281.7	506.3	148400
800	287.5	544.3	176800
900	292.8	578.5	205800
1000	297.6	609.6	235400
1100	302.2	638.2	265400
1200	306.6	664.7	295800
1300	310.9	689.4	326700
1400	315.2	712.6	358000
1500	319.5	734.5	389700
1600	323.7	755.3	421900
1700	328.0	775.0	454500
1800	332.4	793.9	487500

Рис.3.3.3. Высокотемпературная теплоемкость гафната неодима: *1* – сглаженные значения, табл.S3.2, *2* – модельный расчет из теплоемкостей простых оксидов Nd₂O₃ и HfO₂ [112, 113], 3 – данные работы [128].

На рис. 3.3.3 показаны сглаженные значения теплоемкости гафната неодима (1) с характерным для измерений ДСК доверительным интервалом (2.5%) и рассчитанная по Нейману-Коппу из теплоемкостей простых оксидов Nd₂O₃ и HfO₂ [106, 107] теплоемкость Nd₂Hf₂O₇ (2). Как и в случае лантана и празеодима, модельный расчет дает несколько завышенные значения, при температурах >1200 К выходящие за пределы доверительного интервала экспериментальных значений, в то время как результаты (3) работы [128] представляются заниженными.

Наличие 4*f*-электронов у неодима предполагает существование вклада аномалии Шоттки в общую величину теплоемкости гафната неодима. Этот вклад можно определить, вычтя фононную (решеточную) составляющую из измеренных значений теплоемкости, либо оценить его общий вид по разности теплоемкостей гафнатов неодима и лантана:

 $\Delta C_p (Дж/(моль·K)) = C_p(Nd_2Hf_2O_7) - C_p(La_2Hf_2O_7)$

Рис.3.3.4. Разность теплоемкостей гафнатов неодима и лантана.

Как видно, рассчитанная разность характеризуется максимумом около 16 Дж моль⁻¹К⁻¹ при температуре ~135 К.

3.4. <u>Самария гафнат</u> [129, 130]. Для проведения исследований приготовлен образец гафната самария. Дифракционные исследования показали отсутствие посторонних фаз и удовлетворительную закристаллизованность образца структурного типа пирохлора (*a* = 10.580 Å), рис.S4.1, которая подтверждается электронной микроскопией, рис.S4.2. Оценка по Дебаю-Шереру размеров областей когерентного рассеяния по ширине дифракционных отражений, показали, что их размеры превышают значение 100 нм и находятся вне интервала существования наноразмерных частиц.

Температурную зависимость молярной теплоемкости гафната самария при низких температурах определяли методами релаксационной (1) в интервале 2.10 – 36.47 К (28 точек), адиабатической (2) в области 6.17– 326.7К (125 точек) и дифференциальной сканируюшей (3) калориметрии в интервале 312 – 1802 К (150 точек). Экспериментальные данные приведены в табл.S4.1 и на рис.3.4.1. Анализ полученной температурной зависимости показал, что аномалии, характерные для структурных превращений, отсутствуют во всем исследованном интервале 2.1 - 1802 К.

Рис. 3.4.1. Экспериментальная теплоемкость гафната самария: *1* – релаксационная, *2* – адиабатическая и *3* – дифференциальная сканирующая калориметрия. На врезках – область низких температур (0 -40 K) и температурная область (310-350 K) стыковки данных адиабатической и дифференциальной сканирующей калориметрии.

В области самых низких температур (2-20 K), представленных на рис.3.4.2, наблюдается пологий минимум на кривой теплоемкости при ~ 6 K. Его присутствие свидетельствует о

существовании магнитного превращения с максимумом при температуре < 2 К, характерного для однотипных соединений самария: $Sm_2Zr_2O_7$ и $Sm_2Ti_2O_7$ [131, 132]. В силу малых значений температуры вклад магнитных превращений в приращение энтальпии незначителен и сравним с общей неопределенностью величины приращения энтальпии при температуре 298.15 К, тогда как его энтропия может достигать существенной величины 2Rln2~11.53 Дж/(моль·K) [132]. Реальная температурная зависимость теплоемкости в этой области (0-2 K) нуждается в экспериментальных измерениях, к сожалению, недоступных для наших исследований. Тем не менее, с помощью соотношения Веструма:

 $C_{\text{lat}} = (1-f) \times C_{\text{p}} (\text{La}_2 \text{Hf}_2 \text{O}_7) + f \times C_{\text{p}} (\text{Gd}_2 \text{Hf}_2 \text{O}_7),$

где f – относительное изменение мольного объема: $f = [V_m(Sm_2Hf_2O_7) - V_m(La_2Hf_2O_7)] / [V_m (Gd_2Hf_2O_7) - V_m(La_2Hf_2O_7)]$ и приняв, что $C_{p,lat}$ (Gd_2Hf_2O_7) = 0.000632 T^3 (разд.3.6), найдено, что значения найденной решеточной (3) и экспериментальной теплоемкости совпадают в интервале температур ~10-14 K (I и 2), рис.3.4.2. Это означает, что заметные вклады магнитного превращения и аномалии Шоттки в найденном интервале температуры отсутствуют, и величина теплоемкости соответствует решеточной составляющей. Накопленная за счет решеточной составляющей энтропия ниже 12 K равна 0.34 Дж/(моль·K), а полное значение энтропии с учетом магнитного превращения составит $\Delta S = 11.53 + 0.34 = 11.87$ Дж/(моль·K). Эта величина не может быть проигнорирована и должна быть учтена при расчете термодинамических функций гафната самария.

Сглаживание экспериментальных данных по теплоемкости и расчеты термодинамических функций в интервале температур 2 – 44 К выполнено с помощью уравнений вида $C_p=\Sigma A_i \times (1-\exp(-0.001 \times T))^i$ [104], а в области 25 – 1800 К – программой CpFit [106, 107], параметры которых приведены в табл.S4.2.

Для определения общего вида вклада аномалии Шоттки мы также воспользовались соотношением:

 $C_{\text{lat}} = (1-f) \times C_p(\text{La}_2\text{Hf}_2\text{O}_7) + f \times C_p(\text{Gd}_2\text{Hf}_2\text{O}_7),$

где f – относительное изменение мольного объема: $f = [V_m(Sm_2Hf_2O_7) - V_m(La_2Hf_2O_7)] / [V_m (Gd_2Hf_2O_7) - V_m(La_2Hf_2O_7)].$

Рис. 3.4.2. Температурная зависимость молярной теплоемкости $Sm_2Hf_2O_7$ (пирохлор) в интервале 4-20 К: *1*- релаксационная и *2* –адиабатическая калориметрия, *3* - C_{lat} ($Sm_2Hf_2O_7$) = $(1-f) \times C_p(La_2Hf_2O_7) + f \times C_p(Gd_2Hf_2O_7)$.

Подробный анализ использования этого уравнения для общего случая приведен в [133, 134]. Для расчетов использованы значения молярной теплоемкости для гафнатов лантана и гадолиния при температурах выше 25 K, взятые из разделов 3.1 и 3.6. Сглаженная теплоемкость и термодинамические функции гафната самария содержатся в табл.5.

Таблица 5. Сглаженная теплоемкость и термодинамические функции гафната самария (пирохлор).

Τ	$C_{\rm p}$	S(T)	H(T)-H(0 K)
Κ	Дж/(моль•К)	Дж/(моль•К)	Дж/моль
2	1.439	10.51	0.7197
3	1.067	11.05	1.973
4	0.7633	11.33	2.888
5	0.5317	11.47	3.535
6	0.3740	11.56	3.988

7	0.2921	11.61	4.321
8	0.2872	11.65	4.611
9	0.3607	11.69	4.935
10	0.5134	11.73	5.372
12	1.058	11.87	6.903
14	1.921	12.09	9.843
16	3.099	12.42	14.82
18	4.583	12.87	22.47
20	6.358	13.44	33.37
25	12.53	15.47	79.37
30	19.83	18.40	160.2
35	27.05	22.00	277.5
40	34.08	26.07	430.4
45	41.04	30.49	618.2
50	48.00	35.17	840.8
55	54.98	40.08	1098
60	61.95	45.16	1391
65	68.82	50.39	1718
70	75.54	55.74	2079
75	82.04	61.17	2473
80	88.31	66.67	2899
85	94.32	72.20	3355
90	100.1	77.76	3841
95	105.6	83.32	4356
100	110.9	88.87	4897
110	120.9	99.91	6056
120	130.2	110.8	7312
130	139.0	121.6	8659
140	147.4	132.2	10090
150	155.4	142.7	11610
160	163.1	152.9	13200
170	170.4	163.1	14870
180	177.4	173.0	16610
190	184.1	182.8	18420
200	190.4	192.4	20290
210	196.4	201.8	22220
220	202.1	211.1	24220
230	207.5	220.2	26260
240	212.6	229.1	28360
250	217.3	237.9	30510
260	221.8	246.5	32710
270	226.0	255.0	34950
280	230.0	263.3	37230
290	233.7	271.4	39550
298.15	236.6	277.9	41470
300	237.2	279.4	41900

310	240.5	287.2	44290
320	243.6	294.9	46710
330	246.5	302.4	49160
340	249.3	309.8	51640
350	251.9	317.1	54150
400	262.7	351.5	67030
450	270.8	382.9	80370
500	277.0	411.8	94070
550	281.9	438.4	108050
600	285.8	463.1	122200
650	289.1	486.1	136600
700	292.0	507.7	151200
750	294.5	527.9	165800
800	296.8	547.0	180600
850	299.0	565.0	195500
900	301.1	582.2	210500
950	303.2	598.5	225600
1000	305.2	614.1	240800
1100	309.2	643.4	271500
1200	313.1	670.5	302700
1300	316.8	695.7	334100
1400	320.4	719.3	366000
1500	323.9	741.5	398200
1600	327.1	762.5	430800
1700	330.1	782.4	463600
1800	332.9	801.4	496800

Температурная зависимость полученной разности приведена на рис.3.4.3 (1) и симбатна приведенным в [132] расчетным значениям аномалии Шоттки для $Sm_2Zr_2O_7$ и $Sm_2Ti_2O_7$ (2 и 3, соответственно). Отметим, что в [132] расчеты выполнены на формулу $SmXO_{3,5}(X = Ti, Zr)$ и приведены в этой работе в графическом виде.

Высокотемпературная теплоемкость гафната самария (320 – 1300 К), полученная методом дифференциальной сканирующей калориметрии, удовлетворительно описывается уравнением Майера-Келли:

 $C_{\rm p,}$ (Дж/(моль·K)) = 279.8 + 0.0303033×T - 4768840.4/T², R² = 0.9972

Авторы работы [54] дифференцированием полученной экспериментальной зависимости инкремента энтальпии от температуры (730 – 1672 K) получили уравнение теплоемкости:

 $C_{\rm p,m} \left(\text{Дж/(моль·K)} \right) = 259.89 + 0.043220 \times T - 3238900/T^2$

Величины теплоемкости, рассчитанные по этим уравнениям, отличаются в пределах ~1%, что свидетельствует об их взаимном соответствии и достоверности экспериментальных данных, полученных обоими методами, рис.3.4.4.

Рис.3.4.3. Разность $\Delta C_p = C_p - C_{\text{lat}}$ для Sm₂Hf₂O₇ (*1*) и расчетные значения вклада аномалии Шоттки из [132] для Sm₂Zr₂O₇(*2*) и Sm₂Ti₂O₇(*3*).

Рис.3.4.4. Высокотемпературная теплоемкость гафната самария: *I* – сглаженные значения, табл.S3.2, данные работы [52] и *3* – модельный расчет из теплоемкостей простых оксидов Sm₂O₃ и HfO₂ [112, 113].

Как видно из рисунка, все три кривые находятся в пределах доверительного интервала (2.5%) нашего ДСК-эксперимента и соответствуют друг другу, хотя экстраполяция в область более высоких температур кривых 2 и 3 может привести к завышенным результатам.

3.5. <u>Европия гафнат</u>[136, 137]. Молярная теплоемкость гафната европия измерена методами релаксационной (1) (2.44-35.0, 30 точек), адиабатической (2) (9.57 – 328.1 К, 118 точек) и дифференциальной сканирующей (3) (317 – 1797 К, 149 точек) калориметрии (табл. S5.1 и рис.3.5.1. Несмотря на различия в неопределенностях измерений теплоемкости этими методами, полученные значения в переходных температурных интервалах удовлетворительно согласуются между собой. Температурная зависимость молярной теплоемкости гафната европия имеет обычный *S*-образный вид, признаки структурных превращений в виде аномалий на кривой теплоемкости отсутствуют.

Рис.3.5.1. Молярная теплоемкость Eu₂Hf₂O₇ по данным: *1*-релаксационной, *2* –адиабатической и 3 – дифференциальной сканирующей калориметрии; на врезках: область самых низких температур (0 – 25 K) и область сопряжения результатов адиабатической и дифференциальной сканирующей калориметрии.

Анализ температурных зависимостей показал, что наилучшее сглаживание экспериментальных результатов измерения теплоемкости в области температур 2 - 30 К может быть выполнено с помощью полинома 8-й степени

$C_{\rm p} = \Sigma A_i \times T^i$ (2 -20 K)

а в остальном интервале температур (20 – 1800 К) – программой СрFit [106, 107]. Сглаженные значения молярной теплоемкости приведены в табл.6, а параметры сглаживающих функций в табл.S5.2.

T	$C_{\rm p}$	S(T)	H(T)-H(0 K)
	Дж/(моль·к)	Дж/(моль-к)	
2	0.01748	0.00538	0.00842
3	0.02211	0.00680	0.0160
4	0.02882	0.00887	0.0278
5	0.04098	0.0126	0.0494
6	0.06328	0.0195	0.0915
7	0.1016	0.0313	0.171
8	0.1629	0.0501	0.314
9	0.2547	0.0784	0.552
10	0.3847	0.118	0.927
12	0.7907	0.243	2.286
14	1.436	0.442	4.844
16	2.361	0.726	9.103
18	3.580	1.102	15.53
20	5.080	1.563	24.48
25	10.07	3.098	60.66
30	15.98	5.432	124.5
35	22.23	8.361	219.9
40	28.82	11.76	347.3
45	35.78	15.55	508.7
50	43.06	19.69	705.7
55	50.52	24.15	939.6
60	58.03	28.86	1211
65	65.45	33.80	1520
70	72.69	38.92	1865
75	79.71	44.17	2246
80	86.49	49.54	2662
85	93.01	54.98	3111
90	99.30	60.47	3592
95	105.4	66.00	4103
100	111.2	71.56	4645
110	122.4	82.69	5814
120	132.9	93.79	7091
130	142.9	104.8	8470
140	152.3	115.8	9946
150	161.2	126.6	11510
160	169.6	137.3	13170
170	177.4	147.8	14900
180	184.8	158.1	16720
190	191.6	168.3	18560

Таблица 6. Теплоемкость и термодинамические функции Eu₂Hf₂O₇. *P*=101.325 кПа

200	198.1	178.3	20550
210	204.0	188.1	22560
220	209.6	197.7	24630
230	214.7	207.2	26750
240	219.5	216.4	28920
250	223.9	225.4	31140
260	228.1	234.3	33400
270	231.9	243.0	35700
280	235.4	251.5	38030
290	238.8	259.8	40400
298.15	241.3	266.5	42360
300	241.8	268.0	42810
310	244.7	275.9	45240
320	247.4	283.7	47700
330	249.8	291.4	50190
340	252.2	298.9	52700
350	254.3	306.2	55230
400	263.3	340.8	68180
450	269.9	372.2	81520
500	274.9	400.9	95140
550	278.8	427.3	108990
600	282.1	451.7	123000
650	284.9	474.4	137200
700	287.4	495.6	151500
750	289.8	515.5	165900
800	292.1	534.3	180500
850	294.3	552.1	195100
900	296.4	569.0	209900
950	298.6	585.0	224800
1000	300.7	600.4	239800
1100	304.9	629.3	270046
1200	308.9	656.0	300700
1300	312.8	680.9	331800
1400	316.4	704.2	363300
1500	319.8	726.1	395100
1600	322.9	746.9	427200
1700	325.8	766.5	459700
1800	328.4	785.2	492400

Теплоемкость гафната европия в интервале температур 317 – 1800 К также хорошо описывается уравнением Майера-Келли:

 $C_{\rm p}$ (Дж/(моль·К)) = 273.6 + 0.03176923×T - 3673101.0/T², R²=0.9951

Область стыковки экспериментальных данных, полученных адиабатическим методом и ДСК, показана на рис.3.5.1 и демонстрирует взаимное согласование полученных результатов.

На рис.3.5.2 приведено сопоставление результатов по теплоемкости $Eu_2Hf_2O_7$ в области 320-1800 К из различных источников: наши измерения (*1*), расчет по Нейману-Коппу из теплоемкостей Eu_2O_3 [112] и HfO₂ [113] (кривая *2*) и работ [52] (точки *3*) и [31] (точки *4*). Как видно, зависимости *1* и *2* очень близки, хотя оценка теплоемкости по Нейману-Коппу при 298.15 К (242.8 Дж/(моль К)) выше полученного нами экспериментального значения 241.3 на 1.5 Дж/(моль К). Рассчитанные из изменения энтальпии значения теплоемкости (*3*) из [52] также близки к нашим данным (*1*).

Рис.3.5.2 Молярная теплоемкость Eu₂Hf₂O₇ при 320-1800 К: *1*- настоящая работа, *2* – расчет теплоемкости по Нейману – Коппу, *3* –данные [52], *4* – результаты [31].

Результаты расчета теплоемкости (4), исходя из уравнения, приведенного в [31]:

 $H^{\circ}(T)-H^{\circ}(298.15 \text{ K})(Дж/моль) = 298.693 \times T + 2.113 \times 10^{-3} \times T^{2} + 48.663 \times 10^{5}/T + 105564.86$ $C_{p}^{\circ}(Дж/(моль \cdot K)) = 298.693 + 4.226 \times T \times 10^{-3} - 48.663 \times 10^{5} \times T^{-2}$

также близки к нашим значениям (1) в области 300 - 800 К, однако при повышении температуры представляются сильно заниженными. Таким образом, общая тенденция поведения температурных зависимостей, рассчитанных дифференцированием приращений энтальпии [31, 52], несколько отличается от прямых измерений теплоемкости, и экстраполяция этих значений в область высоких температур может привести к существенному искажению реальных величин. Высокотемпературную теплоемкость гафната европия со структурой пирохлора измеряли методом ДСК в работе [56], однако результаты, приведенные в статье в графическом виде, существенно завышены (C_p > 380 Дж/(моль K), 300-1100K) из-за методической ошибки - применения в качестве инертного газа гелия, обладающего высокой теплопроводностью.

Область низких температур (4 – 35 K) показана на врезке рис.3.5.1 по результатам измерений молярной теплоемкости релаксационным (точки 1) и адиабатическим (точки 2) методами. Отличительной особенностью трехвалентных соединений европия является равенство нулю суммарного магнитного момента 4*f* электронов в этой температурной области[17]. Результатом является отсутствие магнитных превращений в области самых низких температур и, соответственно, возрастания теплоемкости при снижении температуры. Это подтверждается экспериментальными результатами, а также и литературными данными для других соединений европия: Eu(OH)₃ [133], Eu₂Zr₂O₇ [138] и EuTaO₄ [139].

По этой причине термодинамические функции в табл.5 не содержат вклада возможных магнитных превращений ниже 4 К. Отсутствие магнитных превращений в гафнате европия не влияет на существование аномалии Шоттки. Для того чтобы выявить ее вид, необходимо оценить решеточную теплоемкость, например, с помощью приведенного в [133] соотношения:

 $C_p(\text{lat.}, \text{Eu}_2\text{Hf}_2\text{O}_7) = (1-f) \times C_p(\text{La}_2\text{Hf}_2\text{O}_7) + f \times C_p(\text{Gd}_2\text{Hf}_2\text{O}_7)$

$$f = [V_m(Eu_2Hf_2O_7) - V_m(La_2Hf_2O_7)]/[V_m(Gd_2Hf_2O_7) - V_m(La_2Hf_2O_7)],$$

где V_m (Ln₂Hf₂O₇) –мольные объемы соединений.

Разность экспериментальной и решеточной теплоемкостей будет представлять оценку вклада взаимодействия 4f-электронов трехвалентных ионов европия и кристаллической решетки (аномалии Шоттки) в теплоемкость Eu₂Hf₂O₇, рис.3.5.3. Как видно, вклад аномалии Шоттки в теплоемкость достигает существенных значений - до 10% при 300 К. На врезке рис.3.5.3. приведена в оригинальном графическом виде оценка аномального вклада в теплоемкость

 $Eu(OH)_3$ из работы [133]. Видно не только совпадение температуры максимума, но и ее величины. (Для сравнения шкалу ординат следует удвоить и умножить на R).

Рис.3.5.3. Оценка вклада аномалии Шоттки в теплоемкость гафната европия. На врезке – аномалия Шоттки Eu(OH)₃ из работы [133].

3.6. <u>Гадолиния гафнат</u> [140].

Для проведения термических и термодинамических исследований синтезирован гафнат гадолиния. Рентгенофазовый анализ показал (рис.S6.1), что получен однофазный гафнат гадолиния структурного типа Fd3m (пирохлор) с параметром кубической решетки $a = 10.513\pm0.009$ Å. В оригинальных работах параметр a имеет значительный разброс и находится в интервале 10.475 - 10.550 Å, что возможно связано с существованием заметной области гомогенности у гафната гадолиния в широком температурном интервале, как это было отмечено для гафната лантана (3.1). Полученный образец не является наноразмерным, что подтверждено оценкой размеров областей когерентного рассеяния по Дебаю, а также электронной микроскопией поверхности образца, рис.S6.2.

Молярная теплоемкость гафната гадолиния измерена в 40 экспериментальных точках в интервале температур 2.52 – 37.0 К методами релаксационной калориметрии (1), 151 точке в интервале 13.19 – 339.9 К адиабатической (2) и 149 точках в области высоких температур: 317 – 1797 К -дифференциальной сканирующей (3) калориметрии. Результаты измерений приведены в табл. S6.1 и на рис. 3.6.1.

Рис.3.6.1. Молярная теплоемкость Gd₂Hf₂O₇ в области температур 0 – 1800 К, экспериментальные данные: *1* – релаксационная, *2* – адиабатическая и *3* – дифференциальная сканирующая калориметрия. На врезке – область стыковки результатов адиабатических и ДСК – измерений (310 – 360 К).

Экспериментальная кривая имеет обычный *S*-образный вид, что свидетельствует об отсутствии структурных превращений во всем интервале температур за исключением области 2.5 – 20 K, где эта кривая захватывает часть нисходящей ветви низкотемпературного превращения *электронного* характера (рис.3.6.2).

Рис.3.6.2. Теплоемкость гафната гадолиния в области низких температур, результаты: 1 -релаксационной, 2 -адиабатической калориметрии; 3 -данные [61], $4 - C_p = 0.000632T^3$. Дж/(моль·К).

Теплоемкость гафната гадолиния в области самых низких температур 0.4 - 5.9 К была измерена калориметром Quantum Design PPMS в работе [61] и найден максимум ~17 Дж/(моль·К) при 0.769 К. При повышении температуры происходит постепенный спад теплоемкости вплоть до минимального значения ~2.53 Дж/(моль·К) при 10.3 К и затем начинается ее возрастание. Природа такого поведения теплоемкости в области очень низких температур хорошо известна [133, 141] и обусловлена взаимодействием 4*f*-электронов с кристаллическим полем (аномалия Шоттки), характерным для соединений Gd³⁺ и наблюдаемым ниже 20 К, а также упорядочением спинов электронов 4*f*- оболочки (магнитное превращение). В результате общая теплоемкость гафната гадолиния C_p в этой области температуры может быть представлена в виде:

$$C_{\rm p} = C_{\rm lat} + C_{\rm mag} + C_{\rm Sh} ,$$

где C_{lat} –решеточная (фононная) теплоемкость, C_{mag} – магнитная составляющая и C_{Sh} – вклад аномалии Шоттки.

Необходимо отметить, что в отличие от соединений парамагнитных ионов лантаноидов (от Ce³⁺ до Yb³⁺), для которых аномалия Шоттки проявляется практически во всем диапазоне температур, например, [124, 142], аномальный вклад $C_{\rm Sch}$ в теплоемкость соединений Gd³⁺ наблюдается ниже 20 К в температурном интервале 0-359 К. Благодаря этой особенности теплоемкость парамагнитных соединений гадолиния при температурах выше 20 К ведет себя также как теплоемкость диамагнитных соединений лантана и лютеция [132].

В работе [143] на основании результатов, полученных в [61], были разделены вклады магнитного превращения C_{mag} и аномалии Шоттки C_{Sh} . К сожалению, в этих работах экспериментальные и расчетные данные приведены только в графическом виде. На рис.3.5.2 воспроизведена температурная зависимость теплоемкости при 0.4- 6 К с точностью до оцифровки. Отметим, что наблюдается удовлетворительное согласование наших результатов и данных работы [61] (точки *l* и *3*), соответственно, рис.3.6.2.

Не имея возможности использовать численные значения температурной зависимости теплоемкости в области электронного превращения, выделим решеточную составляющую C_{lat} теплоемкости экстраполяцией данных адиабатической калориметрии при температурах 20 -35 К – заведомо выше существования аномалий, экстраполяцией к 0 К с помощью уравнения Дебая

$$C_{\text{lat}} = AT^3$$

а найденное значение A = 0.000632 используем для расчета решеточной теплоемкости в области 0 – 20 K без учета вклада аномальных превращений. Исключение из расчетов значений температурной зависимости теплоемкости электронного перехода не является существенным для приращения энтальпии и сравнимо с погрешностями измерений, тогда как вклад в абсолютную энтропию и приведенную энергию Гиббса, близкий к величине 2Rln8 = 34.56Дж/(моль·K) и оцененный в работе [61], не может быть не учтен при выполнении термодинамических расчетов. Полагая, что при температуре 20 K величина энтропии составляет:

$$S = \int_0^{20} Cp dT + 2R \ln 8$$

получим значение S(20 K) = 36.25 Дж/(моль·K). Участок температурной кривой 2.52 – 35.0 K может быть адекватно ($R^2 = 0.9993$) описан зависимостью $C_p = \sum_{0}^{m} A_j U^j$, где U= ln(T/400) [105], параметры которой содержатся в приложении, табл.S6.2. Выше этой температуры, в интервале 35 – 1800 K, экспериментальная теплоемкость сглажена программой CpFit [106, 107], параметры которой приведены в табл.S6.2. По сглаженным значениям теплоемкости рассчитаны термодинамические функции гафната гадолиния, табл.7, с учетом накопленной в интервале от 0 до 20 К энтропии.

Τ	C _p	S(T)	H(T)-H(0 K)
Κ	Дж/(моль К)	Дж/(моль•К)	Дж/моль
2	9.274	25.88	4.637
3	7.248	29.41	12.90
4	5.242	31.27	19.14
5	3.994	32.33	23.76
6	3.199	32.99	27.36
7	2.664	33.45	30.29
8	2.297	33.78	32.77
9	2.056	34.04	34.95
10	1.925	34.25	36.94
12	1.964	34.60	40.78
14	2.384	34.93	45.08
16	3.159	35.30	50.58
18	4.260	35.73	57.96
20	5.650	36.25	67.84
25	10.15	37.97	106.8
30	16.49	40.35	172.7
35	22.31	43.33	269.7
40	28.16	46.69	395.8
45	34.14	50.35	551.5
50	40.28	54.27	737.5
55	46.52	58.40	954.5
60	52.79	62.72	1203
65	59.00	67.19	1482
70	65.08	71.78	1793
75	71.00	76.48	2133
80	76.74	81.24	2502
85	82.29	86.06	2900
90	87.67	90.92	3325
95	92.89	95.80	3776
100	97.96	100.7	4253
110	107.7	110.5	5282
120	117.1	120.3	6407
130	126.1	130.0	7623
140	134.8	139.7	8928
150	143.1	149.3	10320
160	151.0	158.7	11790
170	158.5	168.1	13340
180	165.7	177.4	14960

Таблица 7. Теплоемкость и термодинамические функции Gd₂Hf₂O₇. *P*=101.325 кПа.

190	172.4	186.5	16650
200	178.8	195.5	18400
210	184.8	204.4	20220
220	190.3	213.1	22100
230	195.6	221.7	24030
240	200.5	230.1	26010
250	205.0	238.4	28040
260	209.3	246.5	30110
270	213.3	254.5	32220
280	217.0	262.3	34370
290	220.4	270.0	36560
298.15	223.1	276.2	38370
300	223.7	277.5	38780
310	226.7	284.9	41030
320	229.5	292.2	43320
330	232.2	299.3	45620
340	234.6	306.2	47960
350	236.9	313.1	50320
400	246.5	345.4	62420
450	253.6	374.8	74930
500	259.0	401.9	87750
550	263.2	426.7	100800
600	266.6	449.8	114100
650	269.4	471.2	127500
700	271.8	491.3	141000
750	274.0	510.1	154600
800	276.0	527.9	168400
850	277.9	544.7	182200
900	279.7	560.6	196200
950	281.4	575.8	210200
1000	283.1	590.2	224300
1100	286.5	617.4	252800
1200	289.7	642.5	281600
1300	292.7	665.8	310700
1400	295.6	687.6	340100
1500	298.3	708.1	369800
1600	300.9	727.4	399800
1700	303.3	745.7	430000
1800	305.4	763.1	460400

Молярная теплоемкость Gd₂Hf₂O₇ в области температур 317 – 1797 К может быть также представлена в виде уравнения Майера-Келли:

$$C_{\rm p}$$
 (Дж/(моль·K)) = 262.9 + 0.02467511 ×*T* - 4157392.9/*T*², R² = 0.9953

Зависимость теплоемкости гафната гадолиния на рис.3.6.3 (1) показана с максимальным доверительным интервалом для метода ДСК (2.5 %). Для сравнения пунктирной линией (3) отмечена оценка теплоемкости, рассчитанная по Нейману-Коппу из температурных зависимостей теплоемкостей Gd₂O₃ [112] и HfO₂ [113]:

$C_{\text{p,m}}$ (Дж/(моль·K)) = 257.10 + 0.03687·T × 3747509/ T^2

Различие между расчетной и экспериментальной кривыми находится в пределах экспериментальной неопределенности до ~1000 К и может быть обусловлено разными типами кристаллических решеток гафната гадолиния и исходных оксидов [144]. Кривая (2) соответствует данным, полученным в [31] методом калориметрии сброса в интервале температур 996 - 1738 К дифференцированием экспериментальной температурной зависимости *H*°(*T*) - *H*°(298.15 K) с экстраполяцией к значению теплоемкости при 298.15 К. Значение C_p(298.15 K) было рассчитано по Нейману-Коппу и, таким образом, интервал температур 298.15 -996 К не перекрыт экспериментальными данными. Хотя кривая 2 располагается в области неопределенности нашего эксперимента до температуры ~ 1500 К, ее общий вид существенно отличается от полученной нами зависимости (1) и рассчитанной по правилу Неймана-Коппа (4). Хотя наши значения приращения энтальпии, табл. S6.2, отличаются от приведенных в работе [31] не более чем на 2%, т.е. фактически совпадают в пределах экспериментальных погрешностей, общий ход кривой значительно отличается от результатов прямых измерений теплоемкости (1). Это означает, что дифференцирование температурной зависимости приращения энтальпии, полученной методом калориметрии сброса, может привести к существенным искажениям реального температурного хода теплоемкости. На рис.3.6.3 также приведена температурная зависимость теплоемкости гафната гадолиния (3), полученная методом ДСК в интервале 390 – 750 К [30]. Приведенная зависимость сильно занижена, и авторы для дальнейших расчетов термодинамических величин используют экстраполированные к 2445 К результаты работы [31]. Теплоемкость гафната гадолиния в числе других физических характеристик в интервале 373 – 1073 К измерена в работе [56] методом ДСК, однако использование гелия, имеющего высокую теплопроводность, в качестве защитной атмосферы привело к завышению теплоемкости в 1.5 – 2 раза.

Рис.3.6.3. Молярная теплоемкость Gd₂Hf₂O₇ в интервале 320 – 1800 К: 1 – настоящая работа, 2 – [31], 3 – [30], 4 – оценка теплоемкости по Нейману-Коппу Gd₂O₃ [112] и HfO₂ [113].

Для определения избыточной теплоемкости соединений лантаноидов (аномалии Шоттки) в области температур до 300 К вклад решеточной теплоемкости можно оценить из сравнения теплоемкостей соответствующих соединений лантана и лютеция, при условии, что кристаллическая структура сохраняется для всего ряда. Однако в большинстве случаев это условие не соблюдается, в частности, для гидроксидов, хлоридов, сложных оксидов лантаноидов и циркония или гафния и др. В работе [133] рекомендуют воспользоваться теплоемкостью соединений гадолиния при температурах выше 30 К, так как в области 30 – 350 К аномальный вклад Шоттки отсутствует, и теплоемкость определяется только решеточной составляющей. В связи с этим интересно сравнить теплоемкости гафнатов гадолиния и лантана. На рис.3.6.4 приведена нормированная разность $\Delta C_p/R = [C_p(Gd_2Hf_2O_7) - C_p(La_2Hf_2O_7)]/R$. Нормирование выполнено для того, чтобы иметь возможность сравнить полученную разность и приведенную на врезке нормированной разности теплоемкостей гидроксидов гадолиния и лантана из работы [133]. Как видно, наблюдается полная аналогия в расчетах. Следовательно,

температурные зависимости теплоемкостей соединений лантана и гадолиния являются не полностью симбатными.

Рис.3.6.4. Нормированная разность $\Delta C_p/R = [C_p(\text{Gd}_2\text{Hf}_2\text{O}_7) - C_p(\text{La}_2\text{Hf}_2\text{O}_7)]/R$. На врезке – нормированная разность теплоемкостей гидроксидов гадолиния и лантана из работы [133].

3.7. <u>Тербия гафнат</u> [145, 146]. Гафнат тербия получали методом обратного осаждения. Проведенные дифракционные исследования показали, что полученный однофазный образец имеет кубическую структуру пирохлорного типа с параметром решетки *a* = 10.455(4) Å (рис.S7.1), который удовлетворительно соответствует литературным данным. Растровая электронная микроскопия показала (рис.S7.2), что образец не является наноразмерным, и поправок на размерный фактор вводить не требуется. Молярная теплоемкость гафната тербия со структурой пирохлора измерена методами релаксационной (*I*) (2.44 – 26.6 K, 30 точек), адиабатической (2) (6.8 – 339.1 К, 117 точек) и дифференциальной сканирующей (3) (317 – 1807 К, 150 точек) калориметрии, рис.3.7.1 и табл.S7.1. Результаты измерений удовлетворительно согласуются между собой как в области низких температур (0 – 35 К), так и в интервале сопряжения результатов адиабатических и ДСК измерений.

Рис.3.7.1. Экспериментальная теплоемкость гафната тербия по данным: *1*- релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии. На врезках – область самых низких температур (0 – 35 K) и область стыковки результатов адиабатических и ДСК – измерений (300 – 1810 K)

В области самых низких температур, рис.3.7.2. наблюдается существование минимума теплоемкости при температуре ~8 К. Дальнейшее понижение температуры приводит к росту теплоемкости, что свидетельствует о существовании магнитного превращения ниже 2.44 К. Полученный результат согласуется с выполненными в работе [64] измерениями, которые, к сожалению, приведены только в графическом виде. На рисунке также приведена решеточная

теплоемкость гафната гадолиния, которая располагается существенно ниже измеренной методами релаксационной и адиабатической калориметрии теплоемкости Tb₂Hf₂O₇. Это означает, что теплоемкость гафната тербия помимо решеточной содержит вклад электронной теплоемкости

$$C_{\rm p} = C_{\rm lat} + C_{\rm el},$$

природа которой неясна и требует дальнейшего изучения, что подтверждается публикациями [64, 147]. По этой причине дальнейшие расчеты термодинамических функций выполнены без учета накопленной ниже 3 К энтропии.

Рис.3.7.2. Теплоемкость гафната тербия в области 0 – 35 К по данным: *1* – релаксационной и *2* – адиабатической калориметрии; *3* – решеточная теплоемкость гафната гадолиния, раздел 3.6.

Сглаживание теплоемкости в области низких температур проведено с помощью полинома 5-й степени в интервале 3 – 40 К и программой CpFit [106, 107] в области 20 – 1800 К, параметры

которых приведены в табл. S7.2. Сглаженные значения теплоемкости и рассчитанные величины термодинамических функций гафната тербия содержатся в табл.8.

Т	$C_{\rm p}$	S(T) - S(3 K)	H(T)- $H(3 K)$
Κ	Дж/(моль·К)	Дж/(моль·К)	Дж/моль
3	4.358	1.932	4.739
4	3.713	3.094	8.762
5	3.214	3.866	12.21
6	2.857	4.419	15.24
7	2.639	4.841	17.97
8	2.552	5.186	20.56
9	2.588	5.488	23.12
10	2.736	5.767	25.77
12	3.329	6.313	31.78
14	4.248	6.891	39.31
16	5.427	7.533	48.94
18	6.817	8.251	61.15
20	8.393	9.049	76.33
25	13.18	11.41	129.7
30	18.64	14.30	209.4
35	24.93	17.63	317.8
40	32.15	21.42	460.2
45	39.78	25.65	640.0
50	47.43	30.24	858.1
55	54.80	35.11	1114
60	61.79	40.18	1405
65	68.34	45.39	1731
70	74.50	50.68	2088
75	80.32	56.02	2475
80	85.87	61.38	2891
85	91.21	66.75	3334
90	96.40	72.11	3803
95	101.5	77.46	4297
100	106.5	82.79	4817
110	116.2	93.40	5931
120	125.8	103.9	7141
130	135.1	114.4	8446
140	144.0	124.7	9842
150	152.6	134.9	11330
160	160.7	145.0	12890
170	168.4	155.0	14540
180	175.6	164.8	16260
190	182.3	174.5	18050

Таблица 8. Теплоемкость и термодинамические функции гафната тербия (пирохлор) без учета накопленной ниже 3 К энтропии.

200	188.5	184.0	19900
210	194.3	193.4	21820
220	199.7	202.5	23790
230	204.7	211.5	25810
240	209.3	220.3	27880
250	213.6	229.0	30000
260	217.6	237.4	32150
270	221.2	245.7	34350
280	224.6	253.8	36580
290	227.8	261.8	38840
298.15	230.2	268.1	40700
300	230.7	269.5	41130
310	233.4	277.1	43450
320	235.9	284.6	45800
330	238.2	291.9	48170
340	240.4	299.0	50560
350	242.5	306.0	52980
400	250.8	339.0	65320
450	256.9	368.9	78020
500	261.6	396.2	90990
550	265.2	421.3	104200
600	268.3	444.5	117500
650	270.9	466.1	131000
700	273.3	486.3	144600
750	275.6	505.2	158300
800	277.8	523.1	172100
850	280.0	540.0	186100
900	282.1	556.0	200100
950	284.3	571.3	214300
1000	286.4	586.0	228600
1100	290.6	613.5	257400
1200	294.7	638.9	286700
1300	298.7	662.7	316300
1400	302.4	684.9	346400
1500	305.8	705.9	376800
1600	309.0	725.8	407600
1700	312.0	744.6	438600
1800	314.7	762.5	469900

Рис.3.7.3. Разность $\Delta C_p = C_p(\text{Tb}_2\text{Hf}_2\text{O}_7) - C_p(\text{Gd}_2\text{Hf}_2\text{O}_7)$.

Незаполненная 4*f* электронная оболочка Tb³⁺ предполагает существование вклада в теплоемкость аномалии Шоттки. Для того, чтобы оценить ее вид, найдем разность:

$$\Delta C_{\rm p} = C_{\rm p}({\rm Tb}_2{\rm Hf}_2{\rm O}_7) - C_{\rm p}({\rm Gd}_2{\rm Hf}_2{\rm O}_7),$$

результат показан на рис.3.7.3. Разностная кривая содержит два максимума при 70 и 180 К и минимум при 125 К.

Высокотемпературная теплоемкость $Tb_2Hf_2O_7$ в интервале 300 -1800 К приведена на рис. 3.7.4, (1), в сравнении с расчетом по Нейману-Коппу из теплоемкостей простых оксидов Tb_2O_3 [112] и HfO_2 [113], (2). Как и для большинства гафнатов лантаноидов структурного типа пирохлора, модельный расчет дает завышенную теплоемкость, и ее использование может привести к ошибочному результату. Высокотемпературную зависимость молярной теплоемкости гафната тербия можно представить в виде уравнения Майера-Келли:

Рис.3.7.4. Высокотемпературная теплоемкость гафната тербия: *1* – настоящая работа, *2* – модельный расчет по Нейману-Коппу из теплоемкостей простых оксидов Tb₂O₃ [112] и HfO₂ [113].

3.8. <u>Твердый раствор Dy_2O_3 ·2HfO_2</u> [148, 149]. Для измерений приготовлен однофазный образец структурного типа флюорита *Fm3m* с параметром кубической ячейки a = 5.215(2) Å, рис.S8.1. Размеры областей когерентного рассеяния превышают 100 Å (оценка по Дебаю-Шереру), что подтверждается микросъемкой РЭМ поверхности образца, рис.S8.2 и полученный Dy_2O_3 ·2HfO₂ не является наноразмерным, следовательно, внесения поправок на размерный фактор в измеренные температурные зависимости термодинамических функций не требуется.

Измерения молярной теплоемкости выполнены методами релаксационной (1) в 30 точках в интервале 2.4 – 35.0 K, адиабатической (2) калориметрии в 124 точках в области 6.4 – 346.1 K и в 150 точках – методом ДСК (3) (317 – 1807 K), табл. S8.1и рис. 3.8.1.

Рис.3.8.1. Экспериментальная теплоемкость твердого раствора Dy₂O₃·2HfO₂, результаты: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии. На врезках – область низких температур и интервал стыковки данных адиабатической калориметрии и ДСК.

Как видно из врезок рис.3.8.1, результаты, полученные разными методами, удовлетворительно согласуются между собой в пересекающихся интервалах температуры. На температурной зависимости теплоемкости отсутствуют аномалии, соответствующие структурным превращениям, что подтверждает сохранение типа кристаллической структуры во всем изученном диапазоне температур.

Особенностью температурной зависимости теплоемкости твердого раствора Dy_2O_3 ·2HfO₂ является наличие минимума при $T \approx 8$ K и ее существенное возрастание при дальнейшем понижении температуры, рис.3.8.2. Такое поведение $C_p(T)$ свидетельствует о существовании превращения с максимумом при температуре T < 2.5 K, которое имеет магнитную природу. Магнитные антиферромагнитные переходы в области низких температур характерны для

соединений лантаноидов с частично заполненной 4*f*-электронной оболочкой и, в частности, диспрозия [150]. Данные измерений теплоемкости и магнитных свойств твердого раствора $Dy_2O_3 \cdot 2HfO_2$ вблизи 0 К в литературе отсутствуют, но в работе [151] представлены результаты изучения теплоемкости $Dy_2O_3 \cdot 2ZrO_2$ в интервале температур 0.06 – 25 К. (Отметим, что в работе [151] твердый раствор $Dy_2O_3 \cdot 2ZrO_2$, имеющий структуру флюорита, обозначен как соединение $Dy_2Zr_2O_7$, что не соответствует фазовой диаграмме [1] и кристаллохимическим принципам [8] образования соединений структурного типа пирохлора). Авторами [151] обнаружен максимум теплоемкости при $T \approx 1.5$ К и показано, что в отличие от $Dy_2Ti_2O_7$, имеющего структурный тип пирохлора, магнитное упорядочение в котором заключается в переходе в спиновый лед [152], превращение $Dy_2O_3 \cdot 2ZrO_2$ является антиферромагнитным.

Рис.3.8.2. Теплоемкость твердого раствора $Dy_2O_3 \cdot 2HfO_2$ в области 0 – 35 К по данным l – релаксационной и 2 – адиабатической калориметрии, $3 - C_p = 0.000719 \cdot T^3$. На врезке = зависимость $C_p / T = f(T^2)$.

Этот факт имеет важное значение для учета энтропии магнитного превращения, которая для спинового льда равна $2R(\ln 2 - \ln 3/2) \approx 8.14$ Дж/(моль·К) [120], тогда как для антиферромагнитного перехода она составит несколько большую величину $2R\ln 2 \approx 11.52$ Дж/(моль·К). Мы полагаем, что магнитное поведение Dy₂O₃·2HfO₂ аналогично Dy₂O₃·2ZrO₂, и энтропия его антиферромагнитного превращения составляет $2R\ln 2$, а величины приращения

энтальпии H(2.5 K) - H(0) для этих двух твердых растворов примерно одинаковы и равны 11.7 Дж/моль (рассчитано из графических данных работы [151]).Такая оценка находится в пределах доверительных интервалов для приращения энтальпии и приведенной энергии Гиббса при 298.15 К. Анализ поведения низкотемпературной теплоемкости с помощью построения зависимости $C_p /T = f(T^2)$ показал существование в интервале температур 16-25 К линейного участка $C_p /T = 0.000719 \cdot T^2$, рис.3.8.2. Это позволяет сделать предположение о том, что заметный вклад магнитного превращения C_{mag} в теплоемкость наблюдается при температурах ниже 16 К, тогда как значимый вклад аномалии Шоттки C_{Sch} в теплоемкость начинается выше температуры 25 К. В этом случае расчет энтропийного вклада решеточной теплоемкости при 20 К может быть выполнен по следующему соотношению:

$$S_{\text{lat}} = \int_0^{20} AT^2 \ dT = 1.92 \ \text{Дж/(моль·K)}$$

С учетом вклада магнитного превращения $S_{mag} = 2R \ln 2$ общее значение энтропии при 20 К составит

 $S(20 \text{ K}) = S_{\text{lat}} + S_{\text{mag}} = 13.44 \text{ Дж/(моль·K)}$

Именно эта величина взята за основу при расчете энтропии и приведенной энергии Гиббса твердого раствора Dy₂O₃·2HfO₂.

Выполнить сглаживание экспериментальных значений теплоемкости Dy₂O₃·2HfO₂ единым способом не удалось из-за аномального роста теплоемкости при низких температурах, поэтому температурный диапазон 2.5 - 1800 К был разбит на два интервала. Экспериментальные данные в интервале 2.5 – 35 К сглажены суммой степенных функций:

$$C_{\rm p} = \sum_{i=1}^{6} A_i T^i,$$

а в диапазоне и 30 -1800 К – с помощью программы CpFit [106, 107]. Параметры использованных для расчетов моделей приведены в табл.S8.2.

Сглаженные значения теплоемкости и термодинамические функции твердого раствора Dy₂O₃·2HfO₂ приведены в таблице 9.

Таблица 9. Теплоемкость и термодинамические функции твердого раствора Dy₂O₃·2HfO₂ (флюорит).

Τ	Cp	S(T)	H(T)-H(0 K)
Κ	Дж/(моль•К)	Дж/(моль•К)	Дж/моль
2	4.216	8.166	12.06
3	2.985	9.628	15.63

1.4		10.00	1016
4	2.132	10.36	18.16
5	1.570	10.77	19.99
6	1.231	11.03	21.37
7	1.060	11.20	22.51
8	1.016	11.34	23.54
9	1.068	11.46	24.57
10	1.196	11.58	25.70
12	1.629	11.83	28.49
14	2.272	12.13	32.35
16	3.141	12.49	37.72
18	4.272	12.92	45.09
20	5.701	13.44	55.01
25	10.60	15.21	95.02
30	16.77	17.67	163.2
35	23.11	20.74	263.0
40	29.62	24.24	394.6
45	36.50	28.13	559.8
50	43.57	32.34	759.9
55	50.66	36.82	995.5
60	57.62	41.53	1266
65	64.37	46.41	1571
70	70.87	51.42	1910
75	77.12	56.52	2280
80	83.13	61.69	2680
85	88.95	66.91	3111
90	94 59	72.15	3570
95	100 1	77 42	4056
100	105.5	82.69	4570
110	115.9	93.23	5677
120	125.9	103.7	6886
130	135.5	114.2	8194
140	144.8	124.6	9596
150	153.5	134.9	11090
160	161.8	1/5 1	12670
170	169.6	155.1	1/320
180	107.0	165.0	14320
100	1/0.7	103.0	17960
200	103.0	1/4.0	1/800
200	190.1	104.4	21660
210	190.0	202.0	21000
220	201.3	203.0	25030
230	200.0	212.1	23090
240	211.2	221.0	2//80
250	213.6	229.7	29910
260	219.6	238.2	32090
270	223.3	246.6	34300
280	226.8	254.8	36560

290	230.0	262.8	38840
298.15	232.4	269.2	40720
300	233.0	270.6	41150
310	235.7	278.3	43500
320	238.3	285.8	45870
330	240.7	293.2	48260
340	242.9	300.4	50680
350	245.0	307.5	53120
400	253.5	340.8	65600
450	259.8	371.0	78430
500	264.5	398.7	91550
550	268.1	424.1	104870
600	271.1	447.5	118300
650	273.6	469.3	132000
700	275.8	489.7	145700
750	277.8	508.8	159500
800	279.7	526.8	173500
850	281.5	543.8	187500
900	283.3	559.9	201600
950	285.0	575.3	215800
1000	286.8	589.9	230100
1100	290.2	617.4	259000
1200	293.5	642.8	288100
1300	296.6	666.4	317700
1400	299.7	688.5	347500
1500	302.5	709.3	377600
1600	305.1	728.9	408000
1700	307.6	747.5	438600
1800	309.8	765.1	469500

Сглаженные значения температурной зависимости молярной теплоемкости твердого раствора Dy₂O₃·2HfO₂ позволяют оценить общий вид вклада аномалии Шоттки в теплоемкость. К сожалению, выполнить оценку решеточного вклада в теплоемкость по модели, предложенной Веструмом [133, 141] невозможно, так как твердый раствор Dy₂O₃·2HfO₂ имеет структуру разупорядоченного флюорита, а гафнаты лантана и гадолиния – пирохлора. Поэтому оценка аномального вклада выполнена по разности:

 $\Delta C_{\rm p}(T) = C_{\rm p}({\rm Dy}_2{\rm O}_3{\cdot}2{\rm HfO}_2) - C_{\rm p}({\rm Lu}_2{\rm O}_3{\cdot}2{\rm HfO}_2),$

так как оба твердых раствора имеют одинаковую структуру, а теплоемкость диамагнитного твердого раствора Lu_2O_3 ·2HfO₂ не содержит вклада аномалии Шоттки и определяется, главным образом, решеточной теплоемкостью C_{lat} во всем температурном интервале. Для расчета

разности, рис.3.8.3, использовали данные по теплоемкости твердого раствора Lu₂O₃·2HfO₂ из раздела 3.13.

Рис.3.8.3. Разность $\Delta C_p(T) = C_p(Dy_2O_3 \cdot 2HfO_2) - C_p(Lu_2O_3 \cdot 2HfO_2).$

Высокотемпературная теплоемкость твердого раствора Dy₂O₃·2HfO₂ может быть также представлена в виде уравнения Майера-Келли:

 $C_{\rm p}$ (Дж/(моль·K)) = 264.0 + 0.0264508 ·*T* - 3341968.8/*T*², R² = 0.9956

На рис.3.8.4. приведено сравнение температурных зависимостей теплоемкости твердого раствора Dy_2O_3 ·2HfO₂ полученных в настоящей работе - *1*, *2* - результат расчета по Нейману-Коппу из теплоемкостей простых оксидов Tb_2O_3 [112] и HfO₂ [113] и *3* – данные работы [75]. Как видно, модельный расчет теплоемкости из простых оксидов (*2*) дает завышенный результат, что характерно для большинства лантаноидов; результаты [75] могут быть использованы до 800 K, но экстраполяция в область более высоких температур приводит к недостоверным величинам. В работе [56] методом ДСК проведены измерения теплоемкости и представлены в графическом виде, однако данные сильно завышены (более 380 Дж/(моль·K) при 100 – 800 K) из-за использования гелия в качестве инертного газа и не могут считаться достоверными.

Рис.3.8.4. Высокотемпературная теплоемкость твердого раствора Dy₂O₃·2HfO₂ по данным: *1* – настоящей работы, *2* – модельный расчет по Нейману-Коппу из теплоемкостей простых оксидов Dy₂O₃ [112] и HfO₂ [113] и *3* – данные [75].

3.9. Твердый раствор $Ho_2O_3 \cdot 2HfO_2$.

Синтезированный для измерений порошкообразный $Ho_2O_3 \cdot 2HfO_2$ по результатам рентгенофазового анализа (рис.S9.1) имел структурный тип дефектного флюорита, не содержал посторонних фаз и был хорошо закристаллизован, что подтверждается оценкой размеров кристаллитов по Дебаю-Шереру и растровой электронной микроскопией (рис.S9.2). Параметр a = 5.198(7) Å твердого раствора $Ho_2O_3 \cdot 2HfO_2$ удовлетворительно совпадает с данными из литературы.

Измерения теплоемкости твердого раствора Ho₂O₃·2HfO₂ проводили методами релаксационной (*1*) в области температур 2.4 – 35.0 К (30 точек), адиабатической (*2*) в интервале 5.6 – 345.7 К

(139 точек) и дифференциальной сканирующей (3) при 317 – 1807 К (150 точек) калориметрии, рис.3.9.1, и табл. S9.1.

Рис.3.9.1. Экспериментальная теплоемкость твердого раствора Ho₂O₃·2HfO₂ (флюорит) по данным: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии. На врезках – область самых низких температур 0 – 35 К и интервал стыковки данных адиабатической и дифференциальной сканирующей калориметрии 310 – 360 К.

Как видно из рис.3.9.1, результаты, полученные релаксационной (1) и адиабатической (2) и дифференциальной сканирующей калориметрии (3), удовлетворительно согласуются между собой.

В области гелиевых температур (рис.3.9.2) наблюдается существование минимума на кривой теплоемкости при ~ 8 К. Дальнейшее понижение температуры приводит к росту теплоемкости в результате магнитного упорядочения, максимум которого находится при температуре ниже возможностей нашего эксперимента. И, как можно предполагать по аналогии с другими

соединениями гольмия, максимальных значений теплоемкость $Ho_2O_3 \cdot 2HfO_2$ достигает в окрестностях ~1-2 K [80, 153]. Сравнение теплоемкостей $Ho_2O_3 \cdot 2HfO_2$ и ближайшего более легкого соседа $Dy_2O_3 \cdot 2HfO_2$ (*3*), разд.3.8, показывает что, хотя ионный радиус гольмия меньше, чем у диспрозия, теплоемкость $Ho_2O_3 \cdot 2HfO_2$ в области гелиевых температур оказывается выше. Это следует объяснить наличием аномального вклада Шоттки. Действительно, в электронном спектре соединений Ho^{3+} присутствует энергетический уровень ~10 см⁻¹ [80], соответствующий максимуму аномалии Шоттки при ~8 К.

Это означает, что в области низких температур (<15-20 K) величина теплоемкости Ho₂O₃·2HfO₂ представляет собой сумму трех составляющих: решеточной, магнитной и заметного вклада аномалии Шоттки, также как и для Ho(OH)₃ [80, 153], выделить индивидуальный вклад которых довольно проблематично. По этой причине требуются дополнительные измерения теплоемкости в области 0-2.5 K. Так как удовлетворительно оценить суммарный вклад магнитного превращения и аномалии Шоттки в энтропию ниже 2.5 K не представляется возможным, то расчеты термодинамических функций проведены от 2.5 K, табл.10. Параметры сглаживающих функций содержатся в табл.S9.2.

T	C_{p}	S(T) - S(2 K)	H(T)- $H(2 K)$
K	Дж/(моль·К)	Дж/(моль·К)	Дж/моль
3	4.562	2.008	4.927
4	3.973	3.236	9.182
5	3.535	4.073	12.92
6	3.231	4.689	16.30
7	3.046	5.172	19.43
8	2.967	5.572	22.43
9	2.984	5.922	25.39
10	3.087	6.241	28.42
12	3.523	6.838	34.98
14	4.235	7.431	42.70
16	5.081	8.062	52.17
18	5.508	8.682	62.71
20	6.263	9.298	74.42
25	9.945	11.04	113.8
30	16.04	13.36	177.9
35	23.64	16.39	276.7
40	31.79	20.08	415.3

Таблица 10. Теплоемкость и термодинамические функции твердого раствора Ho₂O₃·2HfO₂ (флюорит). без учета вклада накопленной ниже 2 К энтропии.

45	39.79	24.29	594.4
50	47.31	28.88	812.4
55	54.25	33.72	1067
60	60.64	38.71	1354
65	66.58	43.81	1672
70	72.20	48.95	2019
75	77.61	54.11	2394
80	82.89	59.29	2795
85	88.12	64.47	3223
90	93.32	69.66	3676
95	98.52	74.84	4156
100	103.7	80.03	4661
110	114.1	90.40	5751
120	124.4	100.8	6943
130	134.4	111.1	8237
140	144.0	121.4	9629
150	153.1	131.7	11120
160	161.6	141.8	12690
170	169.7	151.9	14350
180	177.1	161.8	16080
190	184.0	171.6	17890
200	190.3	181.2	19760
210	196.2	190.6	21690
220	201.5	199.8	23680
230	206.5	208.9	25720
240	211.0	217.8	27810
250	215.2	226.5	29940
260	219.0	235.0	32110
270	222.6	243.3	34320
280	225.9	251.5	36560
290	228.9	259.5	38840
298.15	231.2	265.8	40710
300	231.7	267.3	41140
310	234.2	274.9	43470
320	236.6	282.4	45820
330	238.8	289.7	48200
340	240.9	296.9	50600
350	242.8	303.9	53020
400	250.6	336.8	65360
450	256.3	366.7	78040
500	260.5	393.9	90970
550	263.9	418.9	104100
600	266.6	442.0	117300

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
700 271.0 483.5 144200 750 272.9 502.2 157800 800 274.7 519.9 171500 850 276.5 536.6 185300 900 278.2 552.5 199200 950 279.8 567.5 213100 1000 281.4 581.9 227200 1100 284.5 608.9 255500 1200 287.5 633.8 284400 1300 290.2 656.9 312900 1400 292.8 678.5 342100 1500 295.2 698.8 371500 1600 297.3 717.9 401100 1700 299.3 736.0 431000 1800 301.1 753.2 461000	650	268.9	463.4	130700
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	700	271.0	483.5	144200
800274.7519.9171500850276.5536.6185300900278.2552.5199200950279.8567.52131001000281.4581.92272001100284.5608.92555001200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	750	272.9	502.2	157800
850276.5536.6185300900278.2552.5199200950279.8567.52131001000281.4581.92272001100284.5608.92555001200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	800	274.7	519.9	171500
900278.2552.5199200950279.8567.52131001000281.4581.92272001100284.5608.92555001200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	850	276.5	536.6	185300
950279.8567.52131001000281.4581.92272001100284.5608.92555001200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	900	278.2	552.5	199200
1000281.4581.92272001100284.5608.92555001200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	950	279.8	567.5	213100
1100284.5608.92555001200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	1000	281.4	581.9	227200
1200287.5633.82844001300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	1100	284.5	608.9	255500
1300290.2656.93129001400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	1200	287.5	633.8	284400
1400292.8678.53421001500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	1300	290.2	656.9	312900
1500295.2698.83715001600297.3717.94011001700299.3736.04310001800301.1753.2461000	1400	292.8	678.5	342100
1600297.3717.94011001700299.3736.04310001800301.1753.2461000	1500	295.2	698.8	371500
1700 299.3 736.0 431000 1800 301.1 753.2 461000	1600	297.3	717.9	401100
1800 301.1 753.2 461000	1700	299.3	736.0	431000
	1800	301.1	753.2	461000

Рис.3.9.2. Теплоемкость твердого раствора Ho₂O₃·2HfO₂ в области самых низких температур по данным: 1 – релаксационной, 2 – адиабатической калориметрии; 3 – теплоемкость твердого раствора Dy₂O₃·2HfO₂ (3.8). На врезке – результаты измерений теплоемкости Ho(OH)₃ из работы[153].

Энергетический уровень ~10 см⁻¹ не является единственным подлежащим заселению при повышении температуры, и теплоемкость $Ho_2O_3 \cdot 2HfO_2$ при более высоких температурах (>20 К) должна содержать значительный вклад аномалии Шоттки. Ее существование и общий вид можно определить элиминированием решеточной составляющей теплоемкости. Приближенно это можно сделать, используя теплоемкость изоструктурного соединения $Lu_2O_3 \cdot 2HfO_2$ (разд.3.13), не содержащего неспаренных 4f электронов и, соответственно, вклада аномалии Шоттки [80]. (Разность теплоемкостей при высоких температурах рассматривать не имеет смысла из-за более высоких погрешностей в экспериментальных измерениях, полученных методом ДСК). Разность теплоемкостей твердых растворов $Ho_2O_3 \cdot 2HfO_2$ и $Lu_2O_3 \cdot 2HfO_2$ приведена на рис.3.9.3. Помимо предполагаемой аномалии Шоттки с максимумом при ~8 K, в области более высоких температур наблюдается существование двух максимумов около 60 К величиной 11.6 и 200 К 17.2 Дж/(моль·К) соответственно.

Рис. 3.9.3. Разность теплоемкостей твердых растворов Ho₂O₃·2HfO₂ и Lu₂O₃·2HfO₂.

Высокотемпературная теплоемкость твердого раствора Ho₂O₃·2HfO₂ может быть удовлетворительно описана уравнением Майера-Келли:

$$C_{\rm p} (Дж/(моль·K)) = 264.03 + 0.02953623 \cdot T - 3349819.2/T^2, R^2 = 0.9961$$

На рис.3.9.4. приведено сравнение экспериментально измеренной теплоемкости твердого раствора (1) и рассчитанной (2) из теплоемкостей простых оксидов Ho₂O₃ [112] и HfO₂ [113]. Как видно, расчетные значения теплоемкости, как и в большинстве случаев для двойных оксидов лантаноидов и гафния, увеличиваются с ростом температуры намного сильнее экспериментальных значений и уже при температурах выше 900 К находятся за пределами погрешности метода ДСК. Таким образом, использование расчетных значений теплоемкости может привести к ошибочным результатам, особенно в области высоких температур.

Рис.3.9.4. Высокотемпературная теплоемкость твердого раствора Ho₂O₃·2HfO₂ по данным: *1* – настоящей работы, *2* – модельный расчет по Нейману-Коппу из теплоемкостей простых оксидов Ho₂O₃ [112] и HfO₂ [113] и *3* – сглаженные значения теплоемкости.

3.10. <u>Твердый раствор Er_2O_3 ·2HfO_2</u>. Для исследований приготовлен однофазный твердый раствор Er_2O_3 ·2HfO_2, дифрактограмма которого приведена на рис.S10.1. Образец имел структурный тип флюорита с параметром кубической решетки а = 5.185 Å и не являлся наноразмерным в соответствии с оценками по Шереру и морфологии поверхности, рис.S10.2.

Измерения теплоемкости выполнены методами релаксационной (1) в 30 точках и интервале 2.39 – 35.0 К, адиабатической (2) в области температур 4.72 – 239.7 К в 150 точках и дифференциальной сканирующей (3) калориметрии в 150 точках в интервале 317 – 1897 К, рис.3.10.1 и табл.S10.1 Приложения. Как видно из врезок рис.3.10.1, результаты, полученные разными методами, удовлетворительно согласуются между собой. Зависимость теплоемкости от температуры не содержит признаков структурных превращений.

Рис.3.10.1. Экспериментальная теплоемкость твердого раствора Er₂O₃·2HfO₂ (флюорит) по результатам: *I* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии; на врезках – области низких температур (0 – 37 K) и стыковки данных адиабатической и дифференциальной сканирующей калориметрии (320 – 360 K).

В области самых низких температур, рис.3.10.2 обнаружено существование минимума теплоемкости при ~5 К, который возникает вследствие магнитных превращений при температурах ниже 2 К. Точное расположение максимума теплоемкости при магнитном упорядочении неизвестно, однако следует предположить по аналогии с другими соединениями лантаноидов, что его температура около 1 К, а вклад в энтропию твердого раствора составляет 2Rln2. Сравнение температурного хода теплоемкости с теплоемкостями твердых растворов Lu₂O₃·2HfO₂ (*3*) и Dy₂O₃·2HfO₂ (*4*) показывает, что помимо магнитного превращения в области самых низких температур присутствует заметный вклад аномалии Шоттки. Действительно, при отсутствии вклада аномалии Шоттки кривая теплоемкости $Er_2O_3·2HfO_2$ и Lu₂O₃·2HfO₂.

Рис.3.10.2. Теплоемкость твердого раствора $Er_2O_3 \cdot 2HfO_2$ в области самых низких температур по данным: I – релаксационной, 2 – адиабатической калориметрии; 3 – теплоемкость твердого раствора $Lu_2O_3 \cdot 2HfO_2$ (разд.3.13), 4 - теплоемкость твердого раствора $Dy_2O_3 \cdot 2HfO_2$ (разд.3.8).

К сожалению, выделить индивидуальные вклады решеточной, магнитной и аномальной Шоттки теплоемкости в настоящем исследовании не представляется возможным, по этой причине термодинамические функции рассчитаны без учета накопления энтропии в интервале 0 – 2 К.

Сглаженные значения теплоемкости приведены в табл.11, а параметры использованных моделей содержатся в табл.S10.2.

T	$C_{\rm p}$	S(T)- $S(2 K)$	H(T)- $H(2 K)$
Κ	Дж/(моль•К)	Дж/(моль•К)	Дж/моль
3	2.122	1.044	2.545
4	1.615	1.577	4.383
5	1.429	1.912	5.882
6	1.486	2.174	7.322
7	1.729	2.420	8.916
8	2.115	2.674	10.83
9	2.613	2.951	13.18
10	3.203	3.256	16.08
11	3.872	3.592	19.62
12	4.611	3.961	23.85
13	5.416	4.361	28.86
14	6.286	4.794	34.71
15	7.219	5.259	41.45
16	8.212	5.756	49.16
17	9.265	6.285	57.90
18	10.37	6.846	67.71
19	11.53	7.438	78.66
20	12.72	8.059	90.78
21	13.95	8.709	104.1
22	15.20	9.387	118.7
23	16.46	10.09	134.5
24	17.72	10.82	151.6
25	18.98	11.57	170.0
26	20.22	12.34	189.6
27	21.46	13.12	210.4
28	22.71	13.92	232.5
29	23.98	14.74	255.8
30	25.30	15.58	280.5
31	26.72	16.43	306.5
32	28.42	17.30	334.0
33	29.71	18.20	363.1
34	30.88	19.10	393.4
35	32.05	20.02	424.8
40	37.84	24.67	599.5
45	43.63	29.46	803.2
50	49.44	34.36	1036

Таблица 11. Теплоемкость и термодинамические функции твердого раствора Er₂O₃·2HfO₂ (флюорит) без учета вклада накопленной ниже 2 К энтропии.

55	55.20	39.35	1298
60	60.84	44.39	1588
65	66.33	49.48	1906
70	71.64	54.59	2251
75	76.78	59.71	2622
80	81.78	64.83	3018
85	86.65	69.93	3439
90	91.43	75.02	3885
95	96.14	80.09	4354
100	100.8	85.14	4846
110	110.0	95.18	5900
120	119.0	105.1	7045
130	127.9	115.0	8280
140	136.5	124.8	9602
150	144.8	134.5	11010
160	152.8	144.1	12500
170	160.4	153.6	14060
180	167.6	163.0	15700
190	174.3	172.2	17410
200	180.7	181.3	19190
210	186.6	190.3	21020
220	192.1	199.1	22920
230	197.3	207.7	24870
240	202.1	216.2	26860
250	206.5	224.6	28910
260	210.7	232.8	30990
270	214.5	240.8	33120
280	218.1	248.7	35280
290	221.4	256.4	37480
298.15	224.0	262.5	39290
300	224.5	263.9	39710
310	227.4	271.3	41970
320	230.1	278.6	44260
330	232.6	285.7	46570
340	234.9	292.7	48910
350	237.1	299.5	51270
400	246.1	331.8	63360
450	252.7	361.2	75840
500	257.7	388.1	88610
550	261.6	412.9	101600
600	264.6	435.8	114700
650	267.2	457.0	128000
700	269.3	476.9	141500
750	271.2	495.6	155000
800	273.0	513.1	169000
850	274.6	529.7	182300

900	276.1	545.5	196000
950	277.6	560.4	209900
1000	279.1	574.7	223800
1100	281.9	601.4	251800
1200	284.7	626.1	280200
1300	287.3	649.0	308800
1400	289.9	670.4	337600
1500	292.3	690.4	366700
1600	294.5	709.4	396100
1700	296.6	727.3	425700
1800	298.6	744.3	455400

Рис.3.10.3. Разность сглаженных теплоемкостей твердых растворов Er₂O₃·2HfO₂ и Lu₂O₃·2HfO₂ (разд.3.13).

В отличие от магнитных явлений, приводящих к увеличению теплоемкости в узком температурном интервале, взаимодействие 4*f* электронной оболочки происходит в широком температурном интервале, что и вносит аномальный вклад в теплоемкость. Для того, чтобы определить его величину, необходимо отделить решеточную теплоемкость. В первом приближении, считая, что теплоемкость твердого раствора Lu₂O₃·2HfO₂ не слишком отличается

от решеточной теплоемкости Er₂O₃·2HfO₂, определим общий вид аномалии Шоттки, рис.3.10.3. Как видно, наблюдается ярко выраженный максимум величиной ~15 Дж/(моль·К) при температуре около 50 К и более пологий – при температуре ~ 210 К.

Высокотемпературная теплоемкость твердого раствора Er₂O₃·2HfO₂ может быть также описана уравнение Майера – Келли (320 – 1310 K):

$$C_{\rm p}$$
 (Дж/(моль·K)) = 261.9 + 0.0212659 ·*T* - 3735412.9/*T*², R² = 0.9949

На рис.3.10.4 приведено сравнение высокотемпературной теплоемкости твердого раствора $Er_2O_3 \cdot 2HfO_2$ (1) и модельный расчет (2) из теплоемкостей простых оксидов Er_2O_3 [112] и HfO_2 [113]. Как и для большинства гафнатов лантаноидов и твердых растворов, расчетная теплоемкость оказывается много выше экспериментальных значений, и ее использование в расчетах может привести к ошибочному результату, особенно в области высоких температур.

Рис.3.10.4. Высокотемпературная теплоемкость твердого раствора $Er_2O_3 \cdot 2HfO_2$ (*1*) и модельный расчет (*2*) из теплоемкостей простых оксидов Er_2O_3 [112] и HfO_2 [113].

3.11. <u>Твердый раствор Tm_2O_3 ·2HfO_2</u>. Для проведения исследований синтезирован однофазный твердый раствор Tm_2O_3 ·2HfO₂ структурного типа флюорита с параметром кубической ячейки а = 5.170(7) Å (рис.S11.1), не являющийся наноразмерным. Морфология поверхности приведена на рис.S11.2.

Измерения молярной теплоемкости выполнены методами релаксационной (1)в интервале 2.39 – 24.97 К (30 точек), адиабатической (2) в области 4.62 – 350.2 К (138 точек) и дифференциальной сканирующей (3) калориметрии в интервале 315 – 1805 К (150 точек), рис.3.11.1 и таблица S11.1. На врезках рис.3.11.1 показаны области, в которых данные по теплоемкости получены разными методами, и видно их взаимное соответствие. Температурная зависимость теплоемкости не содержит признаков структурных превращений.

Рис.3.11.1. Экспериментальная теплоемкость твердого раствора Tm₂O₃·2HfO₂ по результатам: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии, *4* – теплоемкость гафната лютеция (разд.3.13); на врезках – области низких температур (0 – 27 K) и стыковки данных адиабатической и дифференциальной сканирующей калориметрии (320 – 360 K).

Наиболее интересные результаты получены в области гелиевых температур, рис.3.11.2. Теплоемкость $Tm_2O_3 \cdot 2HfO_2$ представлена по результатам измерений релаксационной (*1*) и адиабатической (*2*) калориметрии, а для сравнения приведены теплоемкости твердых растворов $Dy_2O_3 \cdot 2HfO_2$ (*3*) и $Lu_2O_3 \cdot 2HfO_2$ (*4*). Измеренная теплоемкость $Tm_2O_3 \cdot 2HfO_2$ в интервале температур 5 – 37 К превышает теплоемкость $Dy_2O_3 \cdot 2HfO_2$ (*3*). Вместе с тем, ниже 5 К теплоемкость $Tm_2O_3 \cdot 2HfO_2$ вероятнее всего стремится к нулевому значению, поскольку отсутствуют признаки существования нисходящей ветви магнитного перехода, характерного для других твердых растворов $Ln_2O_3 \cdot 2HfO_2$. Дальнейшая экстраполяция к 0 К теплоемкости и расчеты термодинамических функций выполнены в предположении отсутствия магнитных превращений в интервале 0 – 2.5 К.

Рис.3.11.2. Молярная теплоемкость твердого раствора $Tm_2O_3 \cdot 2HfO_2$ в области температур 0 – 37 К по результатам: *I* – релаксационной и *2* – адиабатической калориметрии; *3* - теплоемкость твердого раствора $Lu_2O_3 \cdot 2HfO_2$ (разд.3.13), *4* - теплоемкость твердого раствора $Dy_2O_3 \cdot 2HfO_2$ (разд.3.8).

Однозначно идентифицировать характер вклада электронной теплоемкости в интервале температур 0 – 30 К невозможно без дополнительных исследований. То, что экспериментальная теплоемкость Tm₂O₃·2HfO₂ в интервале температур 5 – 37 К превышает теплоемкость

 $Dy_2O_3 \cdot 2HfO_2$ (3) означает присутствие аномального вклада Шоттки уже в области низких температур. Определить общий вид аномалии возможно по разности $\Delta C_p = C_p(Tm_2O_3 \cdot 2HfO_2) - C_p(Lu_2O_3 \cdot 2HfO_2)$, рис.3.11.3, из которого виден резкий рост теплоемкости при низких температурах вплоть до максимального значения ~17 Дж/(моль·К) при температуре 200 К.

Рис.3.11.3. Разность сглаженных теплоемкостей твердых растворов Tm₂O₃·2HfO₂ и Lu₂O₃·2HfO₂ (разд.3.13).

Сглаживание экспериментальных данных по теплоемкости выполнено полиномом 5 степени в области температур 0 – 35 К и программой CpFit [106, 107] при более высоких температурах. Параметры использованных для расчетов моделей приведены в табл.S11.2.

Сглаженные значения теплоемкости и термодинамические функции твердого раствора Tm₂O₃·2HfO₂ приведены в табл.12.

Таблица 12. Теплоемкость и термодинамические функции твердого раствора Tm₂O₃·2HfO₂ (флюорит).

Т	C _p	S(T)	H(T)- $H(0 K)$
Κ	Дж/(моль К)	Дж/(моль•К)	Дж/моль

1	0.2889	0.2601	0.1351
2	0.6670	0.5725	0.6074
3	1.096	0.9229	1.486
4	1.547	1.300	2.806
5	1.999	1.693	4.579
6	2.439	2.097	6.800
7	2.861	2.505	9.451
8	3.263	2.913	12.51
9	3.646	3.320	15.97
10	4.016	3.723	19.80
12	4.748	4.520	28.56
14	5.533	5.310	38.83
16	6.449	6.106	50.78
18	7.561	6.928	64.75
20	8.913	7.792	81.19
25	13.38	10.23	136.3
30	19.05	13.16	216.8
35	25.49	16.57	328.1
40	32.04	20.40	471.9
45	38.58	24.56	648.5
50	45.08	28.96	857.6
55	51.56	33.56	1099
60	57.98	38.32	1373
65	64.32	43.21	1679
70	70.55	48.21	2016
75	76.64	53.28	2384
80	82.59	58.42	2782
85	88.38	63.60	3210
90	94.02	68.81	3666
95	99.51	74.04	4150
100	104.9	79.28	4661
110	115.2	89.77	5762
120	125.1	100.2	6963
130	134.5	110.6	8262
140	143.6	120.9	9653
150	152.2	131.1	11130
160	160.3	141.2	12690
170	168.0	151.1	14340
180	175.3	161.0	16050
190	182.2	170.6	17840
200	188.6	180.1	19700
210	194.6	189.5	21610
220	200.2	198.7	23590
230	205.4	207.7	25610
240	210.3	216.5	27690
250	214.8	225.2	29820

260	219.0	233.7	32000
270	223.0	242.1	34200
280	226.6	250.2	36450
290	230.1	258.2	38730
298.15	232.7	264.7	40620
300	233.3	266.1	41050
310	236.2	273.8	43390
320	239.0	281.3	45770
330	241.6	288.7	48170
340	244.0	296.0	50600
350	246.3	303.1	53050
400	255.7	336.6	65620
450	262.6	367.2	78580
500	267.8	395.1	91840
550	271.8	420.8	105300
600	274.9	444.6	119000
650	277.5	466.7	132800
700	279.6	487.4	146700
750	281.3	506.7	160800
800	282.9	524.9	174900
850	284.2	542.1	189100
900	285.5	558.4	203300
950	286.6	573.8	217600
1000	287.8	588.6	232000
1100	289.9	616.1	260800
1200	292.0	641.4	289900
1300	294.1	664.9	319200
1400	296.2	686.8	348800
1500	298.2	707.3	378500
1600	300.2	726.6	408400
1700	302.1	744.8	438500
1800	303.9	762.1	468800

Высокотемпературную теплоемкость твердого раствора Tm₂O₃·2HfO₂ можно представить в виде уравнения Майера-Келли:

$$C_{\rm p}$$
 (Дж/(моль·K)) = 270.8 + 0.0246521 ·*T* - 3642449.2/*T*², R² = 0.9978

На рис.3.11.4 представлена экспериментальная теплоемкость (*1*) твердого раствора Tm₂O₃·2HfO₂ в сравнении расчетной зависимостью (*2*), аддитивно полученной из теплоемкостей простых оксидовTm₂O₃ [112] и HfO₂ [113]. Расчетная теплоемкость (*2*) практически находится в доверительном интервале экспериментальных данных, но

расположена выше, и в случае аппроксимации в область более высоких температур может внести существенные искажения в расчетные данные.

Рис.3.11.4. Высокотемпературная теплоемкость твердого раствора $Tm_2O_3 \cdot 2HfO_2$ (*1*) и модельный расчет (*2*) из теплоемкостей простых оксидов Tm_2O_3 [112] и HfO₂ [113], *3* – сглаженная теплоемкость.

3.12. <u>Твердый раствор Yb₂O₃·2HfO₂</u>. Для проведения исследований синтезирован твердый раствор Yb₂O₃·2HfO₂ структурного типа флюорита с параметром кубической ячейки *a* = 5.157(1) Å, рис.S12.1. Полученный образец не является наноразмерным, морфология поверхности приведена на рис.S12.2.

Измерения теплоемкости выполнены методами релаксационной (1) 2.36 – 19.76 К (30 точек), адиабатической (2) 4.97 – 246.9 К (143 точки) и дифференциальной сканирующей (3) калориметрией 317 – 1807 К (150 точек). Экспериментальные результаты приведены в табл.S12.1 и на рис.3.12.1. Данные, полученные разными методами, удовлетворительно согласуются между собой, а температурная зависимость теплоемкости не содержит признаков структурных превращений.

Рис.3.12.1. Экспериментальная теплоемкость твердого раствора Yb₂O₃·2HfO₂ по результатам: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии; на врезках – области низких температур (0 – 37 K) и стыковки данных адиабатической и дифференциальной сканирующей калориметрии (320 – 360 K).

Температурная зависимость теплоемкости в области 20 – 50 К практически совпадает с теплоемкостью твердого раствора $Lu_2O_3 \cdot 2HfO_2$ (разд.3.13), рис.3.12.2, а понижение температуры от 20 К сопровождается появлением минимума на кривой теплоемкости (~10 К и ~ 0.85 Дж/(моль·К)) дальнейшим ростом. Возрастание теплоемкости обусловлено магнитным превращением при температурах ниже 2.4 К. Заметное влияние магнитного превращения на теплоемкость у соединений лантаноидов, как правило, заканчивается в области 15 – 20 К [17]. Совпадение теплоемкостей твердых растворов Yb₂O₃·2HfO₂ и Lu₂O₃·2HfO₂ объясняется, с одной стороны, результатом возрастания массы лантаноида, которое компенсируется уменьшением объема кристаллической решетки из-за лантаноидного сжатия, с другой – отсутствием заметного вклада аномалии Шоттки.

Рис.3.12.2. Молярная теплоемкость твердого раствора $Yb_2O_3 \cdot 2HfO_2$ в области температур 0 – 42 К по результатам: 1 – релаксационной и 2 – адиабатической калориметрии; 3 - теплоемкость твердого раствора $Lu_2O_3 \cdot 2HfO_2$ (разд.3.13).

Повышение теплоемкости твердого раствора Yb₂O₃·2HfO₂ относительно Lu₂O₃·2HfO₂ за счет вклада аномалии Шоттки наблюдается при температурах выше 30 K (рис.3.12.3), которое имеет минимум неясного происхождения при 100 K, и продолжается с ростом температуры и достигает ~15 Дж/(моль·K) при 300 K. Определение разности при более высоких температурах не имеет смысла из-за погрешностей в измерениях теплоемкости методом ДСК.

Совпадение теплоемкостей Yb₂O₃·2HfO₂ и Lu₂O₃·2HfO₂ при температурах выше 20 К позволяет считать, что накопленная ниже 20 К решеточная энтропия Yb₂O₃·2HfO₂ имеет ту же величину, что и $S(Lu_2O_3·2HfO_2, 20 \text{ K}) = 1.69 \text{ Дж/(моль·K})$ (разд.3.13). Считая, что магнитное превращение увеличивает энтропию твердого раствора на 2Rln2 $\approx 11.53 \text{ Дж/(моль·K})$, общая величина энтропии твердого раствора Yb₂O₃·2HfO₂ составляет при 20 K $S(20 \text{ K}) \approx 13.21 \text{ Дж/(моль·K})$. Последующий расчет термодинамических функций проведен с учетом этой оценки энтропии. Более точное значение может быть получено при исследовании теплоемкости в интервале температур 0–2.5 K, которое в настоящее время недоступно для нас.

Рис.3.12.3. Разность теплоемкостей твердых растворов $Yb_2O_3 \cdot 2HfO_2$ и $Lu_2O_3 \cdot 2HfO_2$ (3.13).

Сглаженные значения теплоемкости в интервале температур 2 – 1800 К и рассчитанные термодинамические функции приведены в табл.13, а параметры моделей примененных для сглаживания приведены в табл.S12.2 Приложения.

Таблица	13.	Теплоемкость	И	термодинамические	функции	твердого	раствора	Yb ₂ O ₃ ·2HfO ₂
(флюорит	г).							

Т	Cp	S(T)	H(T)- $H(0 K)$
К	Дж/(моль·К)	Дж/(моль·К)	Дж/моль
2	3.277	8.846	8.981
3	2.424	10.00	11.81
4	1.805	10.61	13.91
5	1.367	10.96	15.48
6	1.070	11.19	16.69
7	0.882	11.34	17.66
8	0.782	11.45	18.48
9	0.754	11.54	19.24
10	0.788	11.62	20.01

12	1.022	11.78	21.78
14	1.478	11.97	24.24
16	2.178	12.21	27.86
18	3.147	12.52	33.14
20	4.401	12.91	40.63
25	8.685	14.32	72.73
30	13.64	16.35	128.5
35	19.19	18.85	210.3
40	25.35	21.81	321.4
45	31.85	25.17	464.3
50	38.41	28.87	640.0
55	44.83	32.83	848.2
60	51.00	37.00	1088
65	56.89	41.32	1358
70	62.53	45.74	1656
75	67.96	50.24	1983
80	73.23	54.80	2336
85	78.39	59.39	2715
90	83.49	64.02	3119
95	88.55	68.66	3550
100	93.60	73.34	4005
110	103.7	82.73	4991
120	113.7	92.18	6079
130	123.7	101.7	7266
140	133.4	111.2	8551
150	142.7	120.7	9932
160	151.7	130.2	11400
170	160.2	139.7	12960
180	168.3	149.1	14610
190	175.8	158.4	16330
200	182.9	167.6	18120
210	189.4	176.7	19980
220	195.6	185.6	21910
230	201.2	194.4	23890
240	206.5	203.1	25930
250	211.4	211.6	28020
260	215.9	220.0	30160
270	220.1	228.2	32340
280	224.0	236.3	34560
290	227.6	244.2	36820
298.15	230.4	250.6	38690
300	231.0	252.0	39110
310	234.1	259.6	41440
320	237.0	267.1	43790
330	239.7	274.5	46180
340	242.2	281.7	48590

350	244.6	288.7	51020
400	254.2	322.0	63510
450	261.3	352.4	76400
500	266.5	380.2	89600
550	270.6	405.8	103000
600	273.7	429.5	116600
650	276.3	451.5	130300
700	278.4	472.1	144300
750	280.1	491.3	158200
800	281.7	509.5	172300
850	283.1	526.6	186400
900	284.3	542.8	200600
950	285.5	558.2	214800
1000	286.7	572.9	229100
1100	288.9	600.3	257900
1200	291.0	625.5	286900
1300	293.1	648.9	316100
1400	295.2	670.7	345520
1500	297.2	691.1	375140
1600	299.1	710.4	405000
1700	301.0	728.6	435000
1800	302.8	745.8	465200

Высокотемпературная теплоемкость твердого раствора Yb₂O₃·2HfO₂ может быть также представлена уравнением Майера-Келли:

 $C_{\rm p}$ (Дж/(моль·K)) = 273.00 + 0.0172641 ·*T* - 3815631.9*T*², ${\rm R}^2 = 0.9949$

Расчет теплоемкости твердого раствора $Yb_2O_3 \cdot 2HfO_2$ по Нейману-Коппу (2) из теплоемкостей простых оксидов Yb_2O_3 [112] и HfO_2 [113], рис.3.12.4 показал, что модельная зависимость имеет более крутой ход по сравнению с экспериментальными результатами. При температурах выше 900 К расчетная зависимость выходит за область доверительного интервала и ее использование в расчетах при более высоких температурах может привести к ошибочным результатам.

Рис.3.12.4. Высокотемпературная теплоемкость твердого раствора Yb₂O₃·2HfO₂ (*1*) и модельный расчет (*2*) из теплоемкостей простых оксидовYb₂O₃ [112] и HfO₂ [113].

3.13. <u>Твердый раствор Lu₂O₃: 2HfO₂</u>. Для проведения исследований синтезирован твердый раствор Lu₂O₃: 2HfO₂ структурного типа флюорита (*Fm3m*) с параметром кубической ячейки a = 5.146(2) Å, рис.S13.1. Полученный образец не является наноразмерным, морфология поверхности приведена на рис. S13.2.

Измерения теплоемкости выполнены методами релаксационной (1) 2.16 – 40.90 К (29 точек), адиабатической (2) 6.15 – 319.2 К (119 точек) и дифференциальной сканирующей (3) калориметрией 317 – 1807 К (150 точек). Экспериментальные результаты приведены в табл.S13.1 и на рисунке 3.13.1. Данные, полученные разными методами, удовлетворительно согласуются между собой, а температурная зависимость теплоемкости не содержит признаков структурных превращений.

Рис.3.13.1. Экспериментальная теплоемкость твердого раствора Lu₂O₃·2HfO₂ по результатам: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии; на врезках – области низких температур (0 – 37 K) и стыковки данных адиабатической и дифференциальной сканирующей калориметрии (305 – 350 K).

Экспериментальные значения теплоемкости в области 2 – 35 К сглажены степенным уравнением

$C_{\rm p}=\Sigma A_i T^i$,

где *i* = 1-6, а в интервале 20 – 1800 К – программой СрFit [106, 107]. Теплоемкость и термодинамические функции твердого раствора Lu₂O₃·2HfO₂ приведены в табл.14. Параметры сглаживающих функций приведены в табл.S13.2.

Т	C	$\mathbf{C}(T)$	U(T) U(0 V)
K	С _р Лж/(моль·К)	З(1) Лж/(моль∙К)	<i>П(1)-П</i> (0 К) Лж/моль
1	0.03010	0.03365	0.01622
2	0.04800	0.06059	0.05612
3	0.05798	0.08212	0.1096
4	0.06507	0.09978	0.1711
5	0.07492	0.1153	0.2406
6	0.09356	0.1304	0.3239
7	0.1272	0.1471	0.4328
8	0.1822	0.1674	0.5854
9	0.2647	0.1933	0.8063
10	0.3806	0.2269	1.126
12	0.7348	0.3249	2.212
14	1.284	0.4767	4.195
16	2.056	0.6959	7.496
18	3.069	0.9941	12.58
20	4.328	1.380	19.94
25	8.473	2.767	51.38
30	13.90	4.778	107.0
35	19.70	7.355	190.9
40	25.61	10.37	304.1
45	31.62	13.73	447.2
50	37.70	17.38	620.5
55	43.79	21.26	824.2
60	49.81	25.33	1058
65	55.71	29.55	1322
70	61.45	33.89	1615
75	67.01	38.32	1936
80	72.39	42.82	2285
85	77.60	47.36	2660
90	82.65	51.94	3061
95	87.58	56.54	3486
100	92.39	61.16	3936
110	101.7	70.40	4907
120	110.8	79.64	5970
130	119.6	88.86	7122
140	128.1	98.03	8360
150	136.3	107.1	9682
160	144.1	116.2	11080
170	151.7	125.2	12560
180	158.8	134.0	14120

Таблица 14. Теплоемкость и термодинамические функции твердого раствора Lu₂O₃·2HfO₂.

190	165.6	142.8	15740
200	172.0	151.5	17430
210	178.0	160.0	19180
220	183.7	168.4	20990
230	189.0	176.7	22850
240	193.9	184.9	24770
250	198.5	192.9	26730
260	202.8	200.7	28730
270	206.8	208.5	30780
280	210.6	216.1	32870
290	214.1	223.5	34990
298.15	216.8	229.5	36750
300	217.4	230.8	37150
310	220.4	238.0	39340
320	223.3	245.0	41560
330	225.9	252.0	43800
340	228.4	258.7	46080
350	230.8	265.4	48370
400	240.5	296.9	60170
450	247.6	325.6	72380
500	253.1	352.0	84900
550	257.3	376.3	97660
600	260.7	398.9	110600
650	263.5	419.9	123700
700	265.9	439.5	136960
750	268.0	457.9	150300
800	270.0	475.3	163800
850	271.8	491.7	177300
900	273.6	507.3	190900
950	275.3	522.1	204700
1000	276.9	536.3	218500
1100	280.1	562.8	246300
1200	283.2	587.3	274500
1300	286.1	610.1	303000
1400	288.9	631.4	331700
1500	291.6	651.4	360700
1600	294.1	670.3	390000
1700	296.4	688.2	419500
1800	298.5	705.2	449300

Высокотемпературная теплоемкость твердого раствора Lu₂O₃·2HfO₂ может быть представлена уравнением Майера-Келли:
$$C_{\rm p}$$
 (Дж/(моль·К)) = 256.86 + 0.0238362 ·*T* - 4136548.8*T*², R² = 0.9982

Расчет теплоемкости твердого раствора $Lu_2O_3 \cdot 2HfO_2$ по Нейману-Коппу (2) из теплоемкостей простых оксидов Lu_2O_3 [112] и HfO_2 [113], рис. 3.13.2 показал, что модельная зависимость имеет более крутой ход по сравнению с экспериментальными результатами. При температурах уже выше 500 К расчетная зависимость выходит за область доверительного интервала экспериментальных данных и ее использование в расчетах при более высоких температурах может привести к ошибочным результатам.

Рис.3.13.2. Высокотемпературная теплоемкость твердого раствора $Lu_2O_3 \cdot 2HfO_2(1)$ и модельный расчет (2) из теплоемкостей простых оксидов Lu_2O_3 [112] и HfO_2 [113].

3.14. <u>Энтальпии образования двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃:2HfO₂ и их устойчивость относительно простых оксидов [154].</u>

Описание термодинамики двойных оксидов было бы неполным без данных по энтальпиям образования. Литературные данные, приведенные в работах [1, 2, 26, 27, 36], не охватывают

всего ряда двойных оксидов лантаноидов и гафния. По этим причинам синтезированные и охарактеризованные в настоящей работе образцы двойных оксидов лантаноидов и гафния использованы для определения энтальпий образования. Энтальпии образования были измерены методом калориметрии раствореиия в расплаве молибдата натрия на высокотемпературном Тиан-Кальве калориметре AlexSys 1000 (Seraram, France). Полученные результаты приведены в табл.15 и на рис.3.14.1, а также в части двойных оксидов структурного типа пирохлоров частично представлены в работе [154] Как видно, энтальпии образования двойных оксидов относительно простых оксидов гафния и лантаноидов уменьшаются при уменьшении ионного радиуса лантаноида и становятся положительными для Tm₂O₃·2HfO₂, Yb₂O₃·2HfO₂ и Lu₂O₃·2HfO₂. Таким образом, в отличие от двойных оксидов Ln₂Hf₂O₇ твердые растворы Ln₂O₃·2HfO₂ обладают невысокой устойчивостью относительно простых оксидов. Наибольшей устойчивостью характеризуется гафнат лантана. Гафнат тербия занимает пограничное положение между соединениями структурного типа пирохлора и твердыми растворами со структурой флюорита. Существование же твердых растворов Tm₂O₃·2HfO₂, Yb₂O₃·2HfO₂ и Lu₂O₃·2HfO₂ при комнатной температуре следует считать метастабильным за счет кинетических факторов.

3.14.1. Энтальпии образования двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃·2HfO₂ из простых оксидов [154].

Вещество	$\Delta_{\mathrm{f}} H_{\mathrm{ox}}$, кДж/моль	$\Delta_{\mathrm{f}} H_{\mathrm{el}}$, кДж/моль	Атомный радиус Ln ³⁺ , нм
La ₂ Hf ₂ O ₇	-151.99±6.09	-4178.8±6.8	0.116
Pr ₂ Hf ₂ O ₇	-117.04±8.44	-4162.1±9.4	0.112
Nd ₂ Hf ₂ O ₇	-80.04±2.89	-4122.1±4.7	0.1109
Sm ₂ Hf ₂ O ₇	-67.46±3.12	-4125.7±5.6	0.1079
Eu ₂ Hf ₂ O ₇	-35.92±5.15	-3933.6±8.2	0.1066
Gd ₂ Hf ₂ O ₇	-24.37±5.24	-4079.3±6.7	0.1053
Tb ₂ Hf ₂ O ₇	-17.93±4.93	-4118.3±8.1	0.1040
Dy ₂ O ₃ ·2HfO ₂	-12.90±4.89	-4111.5±7.3	0.1027
Ho ₂ O ₃ ·2HfO ₂	-14.46±4.78	-4133.0±9.8	0.1015
Er ₂ O ₃ ·2HfO ₂	-8.94±3.23	-4144.2±7.6	0.1004
Tm ₂ O ₃ ·2HfO ₂	14.36±4.84	-4110.1±7.8	0.0994
Yb ₂ O ₃ ·2HfO ₂	16.82±4.83	-4032.9±8.0	0.0985
Lu ₂ O ₃ ·2HfO ₂	6.28±4.78	-4105.9±9.3	0.0977

Таблица 15. Энтальпии образования двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃·2HfO₂ [154].

Основываясь на энтальпиях образования и измеренных изобарных теплоемкостях проведены расчеты температурных зависимостей свободной энергии Гиббса образования двойных оксидов структурного типа пирохлоров из простых оксидов, рис.3.14.2. Доверительный интервал для величины свободной энергии определяется, в основном, точностью энтальпии образования. Как видно, устойчивость гафнатов лантаноидов в ряду La, Pr, Nd, Sm, Eu, Gd относительно простых оксидов уменьшается. При высоких температурах следует ожидать распада гафнатов самария, европия и гадолиния, что проявляется в виде существования твердых растворов структурного типа дефектного флюорита, и, в целом, соответствует диаграммам состояния, рис.L1 и L2.

Рис.3.14.2. Температурные зависимости энергии Гиббса образования гафнатов лантаноидов из простых оксидов. Доверительный интервал показан выборочно.

3.15. <u>Термическое расширение двойных оксидов лантаноидов и гафния.</u>

Термическое расширение двойных оксидов изучали методом высокотемпературной дифракции в интервале 298 – 1273 К, определяя параметр кубической решетки *а* из данных рентгеновской дифракции при ступенчатом нагревании порошка двойного оксида.

Полученные температурные зависимости параметра *а* двойных оксидов лантаноидов и гафния были представлены в виде полинома 2-й степени также, как и в работе [25]:

 $\boldsymbol{a}(\mathbf{A}) = \mathbf{A} + \mathbf{B} \times T + \mathbf{C} \times T^2,$

и приведены в табл.S15.1 и на рис.3.15.1 и 3.15.2

Как видно из рис.3.15.1 и 3.15.2, термическое расширение двойных оксидов лантаноидов и гафния носит положительный характер, а на температурных зависимостях параметров кубической решетки отсутствуют признаки структурных превращений.

Следует отметить, что температурные зависимости параметров решетки пирохлоров от $Nd_2Hf_2O_7$ до $Tb_2Hf_2O_7$ носят линейный характер, т.о. относительный линейный коэффициент термического расширения для этих соединений остается практически постоянным в изученном

интервале температур. Сравнение температурных зависимостей параметров решетки с полученными значениями для ряда $La_2Hf_2O_7 - Gd_2Hf_2O_7$ в работе [25] показывает некоторое расхождение результатов, однако по утверждению авторов этой работы, неопределенность метода высокотемпературной дифракции составляет не менее 5%.

Рис.3.15.1. Температурные зависимости параметра кубической решетки твердых растворов структурного типа пирохлора: 1 - La₂Hf₂O₇, 2 - Pr₂Hf₂O₇, 3- Nd₂Hf₂O₇, 4 - Sm₂Hf₂O₇, 5 -Eu₂Hf₂O₇, 6 - Gd₂Hf₂O₇, 7 -Tb₂Hf₂O₇.

Рис.3.15.2. Температурные зависимости параметра кубической решетки твердых растворов структурного типа флюорита: l -Dy₂O₃·2HfO₂, 2 - Ho₂O₃·2HfO₂, 3 - Er₂O₃·2HfO₂, 4 - Tm₂O₃·2HfO₂, 5 - Yb₂O₃·2HfO₂, 6 - Lu₂O₃·2HfO₂.

Оксид	A	B×10 ⁻⁵	C×10 ⁻⁸	\mathbb{R}^2			
Пирохлоры							
La ₂ Hf ₂ O ₇	10.7469	7.9785	1.4099	0.9986			
Pr ₂ Hf ₂ O ₇	10.6576	6.3725	2.5080	0.9986			
Nd ₂ Hf ₂ O ₇	10.6189	10.753	-	0.9991			
Sm ₂ Hf ₂ O ₇	10.5474	11.537	-	0.9998			
Eu ₂ Hf ₂ O ₇	10.5034	12.432	-	0.9989			
Gd ₂ Hf ₂ O ₇	10.4801	12.360	-	0.9989			
Tb ₂ Hf ₂ O ₇	10.3965	14.386	-	0.9997			
Флюориты							
$Dy_2O_3 \cdot 2HfO_2$	5.2030	3.1926	1.5910	0.9987			
Ho ₂ O ₃ ·2HfO ₂	5.1868	2.9193	1.7687	0.9987			
Er ₂ O ₃ ·2HfO ₂	5.1711	3.3296	1.5321	0.9997			
Tm ₂ O ₃ ·2HfO ₂	5.1585	3.2620	1.63801	0.9985			
Yb ₂ O ₃ ·2HfO ₂	5.1429	2.9054	1.7600	0.9995			
Lu ₂ O ₃ ·2HfO ₂	5.1361	2.5640	1.7764	0.9995			

Таблица 16. Температурные зависимости параметра кубической решетки двойных оксидов лантаноидов и гафния.

Из температурных зависимостей параметра кубической решетки можно определить коэффициенты линейного термического расширения следующим образом [75]:

текущий $\alpha_{\rm T} = ({\rm d}a/{\rm d}T)/a_{\rm T}$,

относительный $\alpha_{298} = (da/dT)/a_{298}$,

а линейное относительное расширение как

 $TE\% = 100 \times (a_{\rm T} - a_{298})/a_{298}.$

Рассчитанные коэффициенты линейного термического расширения – текущий α_T и относительный α₂₉₈, а также линейное относительное расширение двойных оксидов гафния и лантаноидов приведены в табл.S15.1

Рис.3.15.3. Температурная зависимость относительного изменения мольного объема *f* в модели Веструма.

Температурные зависимости параметров кубических решеток пирохлоров $Ln_2Hf_2O_7$, табл.16, позволили оценить правомерность применения модели Веструма для оценки решеточной теплоемкости соединений, имеющих вклад аномалии Шоттки, используя относительное изменение мольного объема *f*:

$$f = [V_m(Ln_2Hf_2O_7) - V_m(La_2Hf_2O_7)] / [V_m(Gd_2Hf_2O_7) - V_m(La_2Hf_2O_7)],$$

где Ln=Pr, Nd, Sm, Eu.

Как оказалось, при повышении температуры от 300 до 1300 К относительное изменение мольного объема сохраняет постоянное значение в пределах 4-13 % в зависимости от лантаноида, рис. 3.15.3, что при переходе к расчету решеточной теплоемкости в этой температурной области вряд ли может быть существенным и сравнимо с погрешностью измерений.

3.16. Заключение по разделу.

В результате выполнения исследований независимыми калориметрическими методами, согласования и сглаживания экспериментальных результатов впервые получены следующие стандартные величины термодинамические функций двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃·2HfO₂ при 298.15 K, табл.17.

Таблица 17. Стандартные термодинамические функции двойных оксидов $Ln_2Hf_2O_7$ и $Ln_2O_3 \cdot 2HfO_2$ при 298.15 К.

Вещество	$C^{\circ}_{p},$	$S^{\circ}(T),$	$H^{\circ}(T)$ - $H^{\circ}(0)$,
	Дж/(моль·К)	Дж/(моль·К)	Дж/моль
$La_2Hf_2O_7$	225.2 ± 0.2	250.3 ± 1.1	39860 ± 80
$Pr_2Hf_2O_7$	235.9 ± 0.7	289.6 ± 2.8	41320 ± 60
Nd ₂ Hf ₂ O ₇	232.8 ± 0.2	284.3 ± 0.7	42490 ± 60
$Sm_2Hf_2O_7$	236.6 ± 0.3	277.9 ± 0.9	41470 ± 80
$Eu_2Hf_2O_7$	241.3 ± 0.3	266.5 ± 0.8	42360 ± 90
$Gd_2Hf_2O_7$	223.1 ± 0.5	276.2 ± 1.2	38370 ± 100
$Tb_2Hf_2O_7$	230.2 ± 0.3	$268.1^{*)} \pm 0.9$	40700 ± 90
Dy ₂ O ₃ ·2HfO ₂	232.4 ± 0.3	269.2 ± 0.7	40720 ± 80
Ho ₂ O ₃ ·2HfO ₂	231.2 ± 0.3	$265.8^{**)} \pm 2.2$	40710 ± 80
$Er_2O_3 \cdot 2HfO_2$	224.0 ± 0.3	$262.5^{**)} \pm 1.5$	39290 ± 50
$Tm_2O_3 \cdot 2HfO_2$	232.7 ± 0.2	264.7 ± 0.4	40620 ± 60
Yb ₂ O ₃ ·2HfO ₂	230.4 ± 0.3	250.1 ± 1.1	38690 ± 90
$Lu_2O_3 \cdot 2HfO_2$	216.9 ± 0.4	230.9 ± 0.6	36960 ± 60

*) без учета накопленной до 3 К энтропии

**) без учета накопленной до 2 К энтропии

Экспериментальные возможности не позволили оценить энтропийный вклад при температурах ниже 3 и 2 К для $Tb_2Hf_2O_7$, $Ho_2O_3 \cdot 2HfO_2$ и $Er_2O_3 \cdot 2HfO_2$, кроме того, не ясна природа магнитного превращения в $Tm_2O_3 \cdot 2HfO_2$. Для этих веществ необходимо провести дополнительные исследования в области самых низких температур (0-3 K), в том числе, и низкотемпературные магнитные измерения.

Температурные зависимости молярной теплоемкости двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃·2HfO₂ в интервале температур 310-1800 К представлены в виде уравнения Майера-Келли и приведены в табл.18. Эти зависимости могут быть использованы для термодинамических расчетов высокотемпературных процессов с участием двойных оксидов лантаноидов и гафния.

Таблица	18.	Высокотемпературная теплоемкост	ть двойных	оксидов	$Ln_2Hf_2O_7$ I	$4 Ln_2O_3 \cdot 2HfO_2$
<i>С</i> _р (Дж/(м	оль	$(K) = A + B \times T - C/T^2 (310 - 1800 \text{ K})$				

Вещество	Α	В	С	R^2
$La_2Hf_2O_7$	261.4	0.0255829	3912580.7	0.9984
Pr ₂ Hf ₂ O ₇	262.5	0.0342277	3406703.9	0.9979
$Nd_2Hf_2O_7$	261.3	0.0399579	3711461.3	0.9989
$Sm_2Hf_2O_7$	279.8	0.0303033	4768840.4	0.9972
$Eu_2Hf_2O_7$	273.6	0.0317692	3673101.0	0.9951
$Gd_2Hf_2O_7$	262.9	0.0246751	4157392.9	0.9953
$Tb_2Hf_2O_7^{*)}$	256.3	0.0335682	3077386.8	0.9982
Dy ₂ O ₃ ·2HfO ₂	264.0	0.0264508	3341968.8	0.9956
$Ho_2O_3 \cdot 2HfO_2^{**)}$	264.0	0.0295362	3349819.2	0.9961
$Er_2O_3 \cdot 2HfO_2^{**}$	261.9	0.0212659	3735412.9	0.9949
Tm ₂ O ₃ ·2HfO ₂	270.8	0.0246521	3642449.2	0.9978
Yb ₂ O ₃ ·2HfO ₂	273.0	0.0172641	3815631.9	0.9949
$Lu_2O_3 \cdot 2HfO_2$	248.7	0.0238362	4136548.8	0.9982

Низкотемпературная теплоемкость в интервале температур 2-15 К гафнатов лантаноидов и твердых растворов показана на рис.3.14.1 и 3.14.2. Как видно, температурные зависимости молярной теплоемкости носят индивидуальный характер. Магнитные превращения отсутствуют у гафнатов лантана и европия, а также лютеция. Максимальный рост теплоемкости с понижением температуры наблюдается у гафната гадолиния за счет одновременного существования магнитного превращения и аномалии Шоттки, однако их влияние на теплоемкость с повышением температуры быстро спадает и при температурах выше 20-25 К отсутствует полностью. Присутствие аномалии Шоттки в поведении теплоемкости в области самых низких температур (0-25 K) следует полагать у гафнатов празеодима, гадолиния и тербия, а также твердых растворов гольмия, эрбия и тулия, причем существование магнитного превращения у Tm_2O_3 ·2HfO₂ по результатам настоящей работы остается неясным.

Рис.3.14.1. Теплоемкость гафнатов лантаноидов (пирохлоры) в области низких температур.

Рис.3.14.2. Теплоемкость твердых растворов оксидов гафния и лантаноидов (флюориты) в области самых низких температур.

На рис. 3.14.3 приведена оценка общего вида температурных зависимостей аномалий Шоттки двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃·2HfO₂. Эти зависимости также носят индивидуальный характер, так как являются функцией электронного строения атомов лантаноидов и кристаллической структуры.

Рис. 3.14.3. Оценка общего вида температурных зависимостей аномалий Шоттки двойных оксидов Ln₂Hf₂O₇ и Ln₂O₃·2HfO₂.

Анализ температурного поведения мольных объемов показал, что более точные значения решеточной теплоемкости в зависимости от температуры для расчета вклада аномалии Шоттки

могут быть получены при учете увеличения мольных объемов в результате термического расширения.

Полученные данные свидетельствуют о перспективности использования двойных оксидов лантаноидов и гафния при создании новых высокотемпературных материалов. Они могут быть рекомендованы для включения в базы термодинамических данных и использованы для моделирования фазовых равновесий.

выводы

1. Впервые выполнены систематические экспериментальные исследования термодинамических функций и термического расширения двойных оксидов лантаноидов и гафния, необходимые для создания основ получения новых высокотемпературных материалов.

2. Впервые проведено комплексное калориметрическое исследование тремя независимыми методами (релаксационная, адиабатическая и дифференциальная сканирующая калориметрия), которое позволило определить согласованные температурные зависимости теплоемкости в температурном диапазоне 2-1800 К.

3. На основании полученных данных по теплоемкости сделан вывод об отсутствии структурных фазовых переходов в изученной температурной области.

4. Выявлены аномалии теплоемкости у двойных оксидов, связанные с магнитными превращениями ниже 15-20 К, за исключением двойных оксидов лантана, европия, тулия и лютеция; определен вид вклада температурной зависимости аномалии Шоттки в теплоемкость двойных оксидов в области температур до 350 К с максимальной величиной до 18 Дж/(моль·К). Подтверждено, что для $Gd_2Hf_2O_7$ аномальные вклады проявляются при температурах ниже 20 К.

5. Выполнено сглаживание экспериментальных значений молярной теплоемкости, рассчитаны термодинамические функции двойных оксидов лантаноидов и гафния, которые приведены в табличной и аналитической формах в интервале температур 2-1800 К.

6. Показано, что устойчивость гафнатов лантаноидов со структурой пирохлора относительно простых оксидов уменьшается как в ряду $La_2Hf_2O_7 \rightarrow Gd_2Hf_2O_7$, так и с повышением температуры.

7. Методом высокотемпературной рентгеновской дифрактометрии выполнено определение температурных зависимостей параметров кубических решеток двойных оксидов лантаноидов и гафния в интервале температур 298 – 1300 К, показан положительный характер расширения, подтверждено отсутствие структурных превращений. Оценены коэффициенты термического расширения в области температур 298 – 1300 К.

8. Полученные данные свидетельствуют о перспективности использования двойных оксидов лантаноидов и гафния при создании новых высокотемпературных материалов. Они могут быть рекомендованы для включения в базы термодинамических данных и использованы для моделирования фазовых равновесий.

121

СПИСОК ЛИТЕРАТУРЫ

1. Andrievskaya E.R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363-2388.

https://doi.org/10.1016/jeurceramsoc.2008.01.009

2. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. Соединения редкоземельных элементов.

Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. Наука. Москва. 1985. 261 С.

3. Trubelja M.F., Stubican V.S. Phase equilibria and ordering in the system zirconia-hafnia-yttria // J.

Am. Ceram. Soc. 1988. V. 71. P. 662-666. https://doi.org/10.1111/j.1151-2916.1988.tb06385.x

4. Duran P., Pascual C. Phase equilibria and ordering in the system HfO₂-Yb₂O₃ // J. Mater. Sci.

1984. V. 19. P. 1178-1184. https://doi.org/10.1007/bf01120027

5. Stanek C.R., Grimes R.W. Prediction of rare-earth A₂Hf₂O₇ pyrochlore phases // J. Am. Ceram. Soc. 2002. V. 85. P. 2139-2141. https://doi.org/10.1111/j.1151-2916.2002.tb.00423x

6. Rushton M.J.D., Grimes R.W. Predicted pyrochlore to fluorite disorder temperature for A₂Zr₂O₇

compositions // J. Mater. Res. 2004. V. 19. P. 1603-1604. https://doi.org/10.1557/JMR.2004.0231

7. Jiang C., Stanek C.R., Sickafus K.E., Uberuada B.P. First-principles prediction of disodering

tendencies in pyrochlore oxides // Phys. Rev. 2009. B. 79. 104203.

https://doi.org/10.1103/PhysRevB.79.104203

 Subramanian M.A., Aravamudan G., Subba Rao G.V. Oxide pyrochlores—A review // Prog. Solid State Chem. 1983. V. 15. P. 55-143 . https://doi.org/10.1016/0079-6786(83)90001-8

9. Blanchard P.E.R., Liu S., Kennedy B.J., Ling C. D. Investigating the local structure of lanthanoid hafnates Ln₂Hf₂O₇ via diffraction and spectroscopy // J. Phys. Chem. C. 2013. V.117. P. 2266 – 2273. https://doi.org/10.1021/jp311329q

10. Шляхтина А.В.. Морфотропия, изоморфизм и полиморфизм сложных оксидов на основе Ln₂M₂O₇ (Ln = La – Lu, Y, Sc; M = Ti, Zr, Hf, Sn) // Кристаллография. 2013. Т.58. С. 545-560. https://doi.org/10.1134/S1063774513020259

11. Clarke D. R., Phillpot S. R. Thermal barrier coating materials //Materials today. 2005. V. 8. P. 22-29. https://doi.org/10.1016/S1369-7021(05)70934-2

12. Popov V.V., Menushenkov A.P., Yaroslavtsev A.A., Ya.V. Zubavichus, B.R. Gayanov, A.A. Yastrebtsev, D.S. Leshchev, R.V. Chernikov. Fluorite-pyrochlore phase transition in nanostructured $Ln_2Hf_2O_7$ (Ln = La-Lu) // J. Alloys Compd. 2016. V. 689. P. 669-679. https://doi.org/10.1016j.jallcom.2016.08.019

13. Popov V.V., Zubavichus Ya.V., Menushenkov A.P., Yaroslavtsev. A.A., Kulik E.S., Pisarev A.A., Kolyshkin N.A. Lantanide effect on the formation and evolution of nanocrystalline structures in

 $Ln_2Hf_2O_7$ (Ln = Sm-Dy) // Russ. J. Inorg. Chem. 2015. V. 60. P.16-22.

https://doi.org/10.1134/S0033602361501009X

14. Menushenkov A.P., Popov V.V., Zubavichus Ya.V., Yaroslavtsev A.A. Local peculiarities of the nanocrystalline structure of ternary oxides $Ln_2Hf_2O_7$ (Ln = Gd, Tb, Dy) // J. Struct. Chem. 2016. V. 57. P. 1450-1458. https://doi.org/10.1134/S00224476616070210

15. Stanek C.R., Jiang C., Uberuada B.P., Sickafus K.E., Cleave A., Grimes R.. Predicted structure and stability of A₄B₃O₁₂ δ-phase compositions // Phys. Rev. B. 2009. 174101-1-11.

https://doi.org/10.1103/physrevb.80.174101

16. Портной К.И., Тимофеева Н.И., Салибеков С.Е., Романович И.В. Синтез и исследование свойств сложных кислородных соединений Р.З.Э. и гафния // Изв. АН СССР. Неорган. матер. 1970. Т. 6. С. 91.

17. Tari A. The specific heat of matter at low temperatures // Imperial College Press. 2003. 211 P. https://doi.org/10.1142/9781860949395_0006

Комиссарова Л.Н., Ван Гень-Ши, Спицин В.И., Симанов Ю.И. Система La₂O₃- HfO₂ // ЖНХ.
 1964. Т. 9. С 693-697.

19. Карякина Э.Л., Зоз Е.И., Гавриш А.М., Гулько Н.В. Некоторые кристаллохимические и термические характеристики цирконата и гафната лантана // Изв. АНСССР. Неорган. материалы. 1978. Т. 20. С. 3202- 3205.

20. Шевченко А.В., Лопато Л.М., Зайцева З.А. Взаимодействие HfO₂ с оксидами лантана,
празеодима и неодима при высоких температурах // Изв. АН СССР. Неорган. матер. 1984. Т.20.
С. 1530-1534.

21. Торопов Н.А., Барзаковский В.П., Лапин В.В., Курцева Н.Н. Диаграммы состояния силикатных систем // Л.: Наука. 1969. Т.1. 821 С.

22. Зоз Е.И., Гавриш А.М., Гулько Н.В., Фазообразование в системе ZrO₂(HfO₂) – La₂O₃ // Изв. АН СССР. Неорган. матер. 1978. Т.14. С. 109-111.

23. Duran P. Phase relationships in the systems $HfO_2-La_2O_3$ and $HfO_2-Nd_2O_3$ // Ceram. Internat.1975. V. 1.P. 10. https://doi.org/10.1016/0390-5519(75)90032-0

24. Kutti K.V.G., Rajagopalan S., Asuvathraman R. Thermal expansion studies on some rare-earth pyrohafnates by high temperature x-ray powder diffractometry // Thermochim. Acta. 1990. V. 168. P. 205-209. https://doi.org/10.1016/0040-6031(90)80639-G

25. Govindan Kutti K.V., Rajagopalan S., Mathews C.K. Thermal expansion behavior of some rare earth oxide pyrochlores // Mater. Res. Bull. 1994. V. 29. P. 759-766. https://doi.org/10.1016/0025-5408(94)90201-1

26. Ushakov S.V., Navrotsky A., Tangeman J.A., Helen K.B. Energetics of defect fluorite abd pyrochlore phases in lanthanium and gadolinium hafnates // J. Am. Ceram. Soc. 2007. V. 90. P. 1171-1176. https://doi.org/10.1111/j.1551-2916.2007.01592.x

27. Ushakov S.V., Navrotsky A., Tangeman J.A., P.A. Rock. Fluorite and pyrochlore phases in the HfO₂ – La₂O₃ - Gd₂O₃ systems: Characterization and calorimetric study of samples quenched from melts formed by laser heating and aerodynamic levitation // Mater. Res. Symp. Proc. 2008. V. 1122. P. 7-12. https://doi.org/10.1557/PROC-1122-O01-07

28. Kopan A.R., Gorbachuk M.P., Lakiza S.M., TichenkoYa.S. Calorimetric study of the La₂Hf₂O₇ heat capacity in the range 57 – 302 K // Powder Metallurgy Metal Ceram. 2016. V. 54. P. 696-703. https://doi.org/10.1007/s11106-016-9764-5

29. Liang P., Dong S., Zeng J., Yuan J. Jiang J., Deng L., Zhou X., Cao X. La₂Hf₂O₇ ceramics as potential top-coat for thermal/environmental barrier coatings // Ceram. Int. 2019. V. 45. P. 22432-22436. https://doi.org/10.1016/j.ceramint.2019.07.235

<u>30.</u> Vorozhtsov V.A., Stolyarova V.L., Chislov M.V., Zvereva I.A., Simonenko E.P., Simonenko N.P. Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln₂Hf₂O₇): Calorimetric and KEMS studies // J. Mater. Res. 2019. P. 1–11. https://doi.org/10.1557/jmr.2019.206

 Babu R., Nagarajan K. Calorimetric measurement on rare earth pyrohafnates RE₂Hf₂O₇
 (RE=La,Eu,Gd) // J. Alloys Compd. 1998. V. 265. P. 137-139. https://doi.org/10.1016/s0925-8388(97)00430-1

32. Stolyarova V.L., Vorontsov V.A., Lopatin S.I., Shilov A.L. Thermodynamic properties of the La₂O₃-HfO₂ system an high temperatures // Thermochim. Acta. 2018. V. 668. P. 87-95. https://doi.org/10.1016/j.tca.2018.08.014

33. Vorontsov V.V., Stolyarova A.L., Lopatin S.I., Simonenko E.P., Simonenko N.P., Sakharov K.A., Sevastyanov V.G., Kuznetsov N.T. Vaporization and thermodynamic properties of lanthanium hafnate // Alloys Compd. 2018. V. 735. P. 2348-2355. https://doi.org/10.1016/j.jallcom.2017.11.319
34. Guo X., Lu Z., Park. H.-Y., Li L., Knapp J., Jung Y.-G., Zhang J. Thermal properties of La₂Hf₂O₇ double-layer thermal barrier coatings // Adv. Appl. Ceram. 2019. V. 118. P. 257-263
https://doi.org/10.1080.17436753.2018.1510820

35. Кравчинская М.В., Тихонов П.А., Кузнецов А.К, Ганиц Ф. Фазовые соотношения в системе HfO₂ – PrO_{1.5} – DyO_{1.5} // Докл. АН СССР. Неорган. матер. 1978. Т. 238. С. 583-585.

36. Папуцкий Ю.Н., Кржижановская В.А., Глушкова В.Б. Энтальпии образования гафнатов и цирконатов редкоземельных элементов // Неорган. матер. 1974. Т. 10. С. 1551-1552.

37. Anand V.K., Opherden L., Xu J., D.T. Adroja, A.T., Islam M.N., Herrmannsdörfer T., Hornung J., Schönemann R., Uhlarz M., Walker H.C., Casati N., Lake B. Physical properties of the candidate

quantum spin-ice system Pr₂Hf₂O₇ // Phys. Rev. B. 2016. V. 94. 144415.

https://doi.org/10.1103/PhysRevB.94.144415

38. Sibile R., Lhotel E., Hatnean M. C., Balakrishnan G., Fåk B., Gauthier N., Fennel T.I,

Kenzelmann M. Candidate quantum spin ice in the pyrochlore $Pr_2Hf_2O_7$ // Phys. Rev. B. 2016. V.94.

024436. https://doi.org/10.1103/PhysRevB.94.024436

39. Hatnean M. C., Sibile R., Lees M.R., Kenzelmann M., Ban V., Pomjakushkin V., Balakrishnan G. Single crystal growth, structure and magnetic properties of Pr₂Hf₂O₇ pyrochlore // J. Phys.: Cond. Matter. 2017. V. 29. 075902. https://doi.org/10.1088/1361-648X/29/7/075902

40. Anand V.K., Islam A.T.M.N., Samartzis A., J. Xua, N. Casatic, B. Lake. Optimization of single

crystal growth of candidate quantum spin-ice Pr₂Hf₂O₇ by optical floating-zone method // J. Crys.

Growth. 2018. V. 498. P. 124-129. https://doi.org/10.1016/J.jcrysgro.2018.06.011

41. Brixner L.H. Structural and luminescent properties of the Ln₂Hf₂O₇-type rare earth hafnates // Mat. Res. Bull. 1984. V. 19. P. 143-149. https://doi.org/10.1016/0025-5408(84)90084-9

<u>42.</u> Sevastyanov V.G., Simonenko E.P., Ignatov N.A., Pavelko R.G., Kuznetsov N.T. Synthesis and investigation of thermal stability of fine-dispersed refractory lanthanium and neodymium zirconates and hafnates for thermal barrier coatings // Composites and nanostructures. 2009. V. 1. P. 50-58.

43. Wei F., Tu H., Du J. Epitaxial growth of Nd₂Hf₂O₇ (111) thin films on Ge (111) substrates by pulsed laser deposition // Applied Surface Science. 2009. V. 256. P. 615-618.

https://doi.org/10.1016/j.apsusc.2009.06.063

44. Ubic R., Abrahams I., Hu Li. Oxide ion disorder in Nd₂Hf₂O₇ //J. Am. Ceram. Soc. 2008. V. 91. P. 235-239. https://doi.org/10.1111/j.1551-2916.2007.02025.x

45. Anand V.K., Bera A.K., Xu J., Herrmannsdörfer T., Ritter C., Lake B. Observation of long-range magnetic ordering in pyrohafnateNd₂Hf₂O₇: a neutron diffraction study // Phys. Rev. B. 2015. V. 92. P. 184418-1 – 184418-10. https://doi.org/10.1103/PsysRevB.92.184418

46. Anand V.K., Abernathy D.L., Adroja D.T., Hillier A.D., Biswas P.K., Lake B. Muon spin relaxation and inelastic neutron scattering investigations of the all-in/all-out antiferromagnet Nd₂Hf₂O₇ // Phys. Rev. B. 2017. V. 95 P. 224420-1 – 224420-8. https://doi.org/10.1103/PhysRevB.95.2224420
47. Севастьянов В.Г., Симоненко Е.П., Севастьянов Д.В., Симоненко Н.П., Столярова В.Л., Лопатин С.И., Кузнецов Н.Т. Синтез, парообразование и термодинамика высокодисперсного порошка Nd₂Hf₂O₇ // ЖНХ. 2013. Т.58. С. 3-10. https://doi.org/10.7868/S0044457X13010170
48. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Stolyarova V.L., Lopatin S.I., Kuznetsov N.T. Synthesis, vaporization and thermodynamic properties of superfine Nd₂Hf₂O₇ and Gd₂Hf₂O₇ // Europ. J. Inorg. Chem. 2013. V.26.4636-4644. https://doi.org/10.1002/ejic.201300253
49. Исупова Е.Н., Глушкова В.Б., Келер Э.К. Изучение системы HfO₂ – Sm₂O₃ в твердых фазах в области, богатой двуокисью гафния // Изв. AH СССР. Неорган. матер. 1968. Т.4. С. 399-405.

50. Duran P.. The system hafnia-samaria // J. Am. Ceram Soc. 1979. V. 62. P. 9-12. https://doi.org/10.1111/j.1151-2916.1979.tb18794.x

51. Шевченко А.В., Лопато Л.М., Назаренко Л.В. Системы HfO₂- оксиды самария, гадолиния, тербия и диспрозия при высоких температурах // Изв. АН СССР. Неорган. матер. 1984. Т. 20. С. 1862-1866.

52. Kandan R., Prabhakara Reddy B., Panneerselvam G., Mudali U.K., Enthalpy measurements on rare earth hafnates RE₂O₃·2HfO₂ (s) (RE = Sm, Eu, Dy) // J. Therm. Anal. Calorim 2017. V. 131. P. 2687–2692. https://doi.org/10.1007/s10973-017-6802-6.

53. Жидовинова С.В., Стрекаловский В.Н., Пельгуев С.Ф. Фазовое состояние системы HfO₂ – Eu₂O₃ в области, богатой HfO₂. // Изв. AH СССР. Неорган. матер. 1975. Т. 11. С 1809-1811. 55. Popov V.V., Menushenkov A.P., Zubavichus Ya.V., Yaroslavtsev A.A., Veligzhanin A.A., Kolyshkin N.A., Kulik E.S. Studying processes of crystallization and cation ordering in Eu₂Hf₂O₇ // Russ. J. Inorgan. Chem. 2015. V. 60. P. 602-609. https://doi.org/10.1134/S0036023615050162 56. López-Cota F.A., Cepeda-Sánchez N.M., Díaz-Guillén J.A., Dura O. J., Lópes de la Torre M.A., Maczka M., Ptak M., Fuentes A.F. Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates // J. Am. Ceram. Soc. 2017. V. 100. P. 1994-2004. https://doi.org/10.1111/jace.14712

57. Исупова Е.И., Глушкова В.Б., Келер Э.К. Изучение системы Gd₂O₃ - HfO₂ в области богатой двуокисью гафния // Изв. АН СССР. Неорган. матер. 1968. Т.4. С.1732-1737.

58. Spiridonov F.M., Stepanov V.A., Komissarova L.N., Spitsyn V.I. The binary system HfO2 - Gd2O3

// J. Less-Common Metals. 1968. V. 14. P. 435 – 443. https://doi.org/10.1016/0022-5088(68)90167-7

59. Duran P. Phase relationships in the hafnia-gadolinia system // Ceramurgia Int. 1977. V. 3. P. 137 – 140. https://doi.org/10.1016/0390-5519(77)90059-x

60. Matovic B., Maletaskic. J., Bucevac. D., Zagorac. J., Fajar. M., Yoshida. K., Yano. T. Synthesis, characterization and sintering of Gd₂Hf₂O₇ powders synthesized by solid state displacement reaction at low temperature // Ceram. Int. 2018. V. 44. P. 16972-16976.

https://doi.org/10.1016/j.ceramint.2018.06.138

61. Durand A.M., Klavins P., Corruccini L.R. Heat capacity of the frustrated magnetic pyrochlores $Gd_2Zr_2O_7$ and $Gd_2Hf_2O_7$ // J. Phys.: Condens. Matter. 2008. V. 20. 235208.

https://doi.org/10.1088/0953-8984/20/23/235208

62. Biswas A.A., Jana Y. Effect of single-ion anisotropy on the low-temperature spin properties of frustrated Gd₂Hf₂O₇ // Int. Conf. magnet. Mater. (ICMM-2010) AIP Conf. Proc. 2011. 1347. P. 301-305. https://doi.org/10.1063/1.3601841

63. Kabanova V.A., Popov V.V., Zubavichus Ya.V., Kulik E.S., Yaroslavtsev A.A., Chernikov R.V., Menushenkov A.P. High local disorder in Tb₂Hf₂O₇ pyrochlore oxide nanocrystals // J. Phys.: Conf. Series. 2016. V. 712. 012113. https://doi.org/10.1088/1742-6596/712/1/012113

64. Anand V. K., Opherden L., Xu J., Adroja D.T., Hillier A.D., Biswas P.K., Herrmannsdörfer T., Uhlarz M., Hornung J., Wosnitza J., Canévet E., Lake B. Evidence for a Dynamical Ground State in the Frustrated Pyrohafnate Tb₂Hf₂O₇ // Phys. Rev. B 2008. V. 97. P. 094402.

https://doi.org/10.1103/physrevb.97.094402

65. Шевченко А.В., Лопато Л.М., Кирьякова И.Е. Взаимодействие HfO₂ с Y₂O₃, Ho₂O₃, Er₂O₃, Yb₂O₃ и Lu₂O₃ при высоких температурах // Изв. АН СССР. Неорган. матер. 1984. Т. 20. С. 1991-1996.

66. Перова Е.Б., Спиридонов Ф.М., Комиссарова Л.Н. Фазовые равновесия в системе HfO₂ - Dy₂O₃ // Изв. АН СССР. Неорган. матер. 1972. Т. 8. С.1878 – 1880.

67. Спиридонов Ф.М., Комиссарова Л.Н. Система HfO₂ - Er₂O₃ // ЖНХ. 1970. Т.15. С. 875- 878.
68. Спиридонов Ф.М., Комиссарова Л.Н., Кочаров А.Г., Спицин В.И. Система HfO₂ - Y₂O₃ // ЖНХ. 1969. Т. 14. С. 2535 – 2538.

69. Stacy D.W., Wilder D.R. The yttria-hafnia system // Am. Ceram. Soc. 1975. V. 58. P. 285 – 288. https://doi.org/10.1111/j.1151-2916.1975.tb11476.x

70. Scott H. G. Phase relationships in the yttria-rich part of the yttria-zirconia system // J. of Mater. Sci. 1977. V. 12. P. 311–316. https://doi.org/10.1007/bf00566272

71. Портной К.И., Романович И.В., Тимофеева Е.Н. Исследование взаимодействия двуокиси гафния с окисью иттрия // Изв. АН СССР. Неорган. матер. 1971. Т. 7. С. 888-889.

72. Исупова Е.И., Глушкова В.Б., Келер Э.К. Изучение системы Y₂O₃- HfO₂ в области, богатой двуокисью гафния // Изв. АН СССР. Неорган. матер. 1969. Т. 5. С. 1948-1952.

73. Lee T.A., Navrotsky A. Enthalpy of formation of cubic yttria-stabilized hafnia // J. Mat. Res. 2004.

V. 19. P. 1855-1861. https://doi.org/10.1557/JMR.2004.0234

74. Stacy D.W., Wilder D.R. Thermal expansion in the system Y_2O_3 - HfO₂ // J. Am. Ceram. Soc.

1973. V. 56. P. 224. https://doi.org/10.1111/j.1151-2916.1973.tb12466.x

75. Panneerselvam G., Venkata Krishnan R., Nagarajan K., Antony M.P. Thermal expansion and heat capacity of dysprosium hafnate // J. Therm. Anal. Calorim. 2010. V. 101. P. 169-173. https://doi.org/10.1007/s10973-009-0430-8

76. Ramon J.G.A., Wang C.W., Ishida L., Bernardo P.L., Leite M.M., Vichi F.M., Gardner J.S.,

Freitas R.S. Absence of spin-ice state in the disordered fluorite Dy₂Zr₂O₇ // Phys. Rev. B. 2019. V. 99. P.214442. https://doi.org/10.1103/PhysRevB.99.214442

77. Westrum E.F. Jr, Lecture R. Lattice and Schottky contributions to morphology of lanthanium heat capacities // J. Chem. Thermodyn. 1983. V. 15. P. 305-325.

78. Chirico R.D., Westrum E.F. Ir. Thermophysics of the lanthanide hydroxides. I. Heat capacities of La(OH)₃, Gd(OH)₃ and Eu(OH)₃ from near 5 to 350 K. Lattice and Schottky contributions // J. Chem. Thermodyn. 1980. V. 12. P. 71-85.

79. Chirico R.D., Westrum E.F. Ir. Thermophysics of the lanthanide hydroxides. II. Heat capacities from 10 to 350 K of $Nd(OH)_3$ and $Tb(OH)_3$. Lattice and Schottky contributions // J. Chem.

Thermodyn. 1980. V. 12. P. 311-327. https://doi.org/10.1016/0021-9614(80)90143-3

80. Chirico R.D., Boerio-Goates J., Westrum E.F. Ir. Thermophysics of the lanthanide hydroxides. IV.

The heat capacities of Ho(OH)₃ from 11 to 350 K. Lattice and Schottky contributions // J. Chem.

Thermodyn. 1981. V. 13. P. 1087-1094. https://doi.org/10.1016/0021-9614(81)90007-0

81. Гавричев К.С., Тюрин А.В., Гуськов В.Н., Гагарин П.Г., Гуськов А.В., Рюмин М.А.

Низкотемпературная теплоемкость м-ортотанталата тербия и аномалия Шоттки // ЖНХ. 2020.

T. 65. C. 651-659. https://doi.org/10.31857/S0044457X2050086

82. Risovany V. D., Zakharov A. V., Muraleva E. M., Kosenkov V. M., Latypov R. N. Dysprosium hafnate as absorbing material for control rods // J. Nucl. Mater. 2006. V. 355. P. 163–

170. https://doi.org/10.1016/j.jnucmat.2006.05.029

83. Chaudhry A., Canning A., Boutchko R., Weber M. J., Grønbech-Jensen N., Derenzo S. E.

(2011). First-principles studies of Ce-doped $RE_2M_2O_7$ (RE = Y, La; M = Ti, Zr, Hf): A class of

nonscintillators // J. Appl. Phys. 2011. V. 109. P. 083708. https://doi.org/10.1063/1.3561490

84. Zhou G., Wang Z., Zhou B., Zhao Y., Zhang G., Wang, S. (2013). Fabrication of transparent

Y2Hf2O7 ceramics via vacuum sintering // Optic. Mater. 2013. V. 35. P. 774-

777. https://doi.org/10.1016/j.optmat.2012.09.016

85. Шляхтина А.В., Щербакова Л.Г. Новые твердые электролиты в семействе пирохлоров // Электрохимия. 2012. Т. 48. С. 3-30.

86. Shlyakhtina A.V., Shcherbakova L. G. Polymorphism and high-temperature conductivity of Ln₂M₂O₇ (Ln=Sm-Lu; M=Ti, Zr, Hf) pyrochlores // Solid State Ionics. 2011. V. 192. P. 200–204. https://doi.org/10.1016/j.ssi.2010.07.013

87. Cao X.Q., Vassen R., Stoever D. Ceramic materials for thermal barrier coatings // J. Europ. Ceram. Soc. 2004. V. 24. P. 1–10. https://doi.org/10.1016/s0955-2219(03)00129-8

88. Mehboob G., Liu M.-J., Xu T., Hussain S., Mehboob G., Tahir, A. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime // Ceram. Int. 2019. V. 46. P. 8497-8521. https://doi.org/10.1016/j.ceramint.2019.12.20

Padture, N. P. (2002). Thermal Barrier Coatings for Gas-Turbine Engine Applications // Science.
 2002. V. 296. P. 280–284. https://doi.org/10.1126/science.1068609

90. Yiming Wu, Du Hong, Xin Zhong, Yaran Niu, Xuebin Zheng. Research progress on hafniumbased thermal barrier coatings materials. // Ceram. Int. 2023. V.49. P.21133-21141. https://doi.org/10.1016/j.ceramint.2023.03.280

91. Gu S., Zhang S., Liu F., Liang Y., Li W. Microstructure and thermal shock performance of Y₂Hf₂O₇ coating deposited on SiC coated C/C composite // Appl. Surf. Sci. 2018. V. 455. P. 849–855. https://doi.org/10.1016/j.apsusc.2018.06.073

92. Poerschke D.L., Barth T.L., Levi C.G. Equilibrium relationships between thermal barrier oxides and silicate melts // Acta Mater. 2016. V. 120. P. 302–314.

https://doi.org/10.1016/j.actamat.2016.08.077

93. Poerschke D.L., Jackson R.W., Levi C.G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions // Annu. Rev. Mater. Res. 2017. V. 47. P. 297-330. https://doi.org/10.1146/annurev-matsci-010917-105000

94. Summers W.D., Poerschke D.L., Begley M.R., Levi C.G., Zok F.W. A computational modeling framework for reaction and failure of environmental barrier coatings under silicate deposits // J. Am. Ceram. Soc. 2020. *V. 103*(9). P. 5196-5213. https://doi.org/10.1111/jace.17187

95. Fabrichnaya O., Seifert H. J. Up-Date of a Thermodynamic Database of the ZrO_2 -Gd₂O₃-Y₂O₃-Al₂O₃ System for TBC Applications // J. Phase Eq. Diffus. 2010. V. 32. P. 2–

16. https://doi.org/10.1007/s11669-010-9815-4

96. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. Термодинамические функции сложных оксидов лантаноидов на основе диоксида циркония – пирохлоров Ln₂Zr₂O₇(Ln = La, Pr, Sm, Eu, Gd) и флюоритов Ln₂O₃ (Ln = Tb, Ho, Er, Tm) // ЖНХ. 2019. Т. 64. С. 1072-1088. https://doi.org/10.1134/S0044457X19100040

97. https://www.qdusa.com/products/ppms.html

98. PPMS Physical Property Measurement System. Quantum Design. 2004.

99. Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jame M.,

Cooley J.C., Hults W.L., Morales L., Thoma D.J., Smith J.L., Boerio-Goates J., Woodfield B.F., Steart G.R., Fisher R.A., Phillips N.E. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system // Cryogenics. 2003. V. 43. P. 369–378.

https://doi.org/10.1016/s0011-2275(03)00092-4

100. Sabbah R., Xu-wu A., Chicos J.S., Planas Leitão M.L., Roux M.V., Torres L.A. Reference materials for calorimetry and differential thermal analysis // Thermochim. Acta. 1999. V. 331. P. 93-204. https://doi.org/10.1016/s0040-6031(99)00009-x

101. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. Автоматический низкотемпературный калориметр // Приборы и техн. экспер. 1985. Т.28. Вып. 6. С. 195-197.

102. Maier C.G., Kelley K.K. An equation for the representation of high-temperature heat content data // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029

103. Ditmars D. A., Ishihara S., Chang S. S., Bernstein G., West E. D. Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al₂O₃) from 10 to 2250 K // J. Res.NBS. 1982.
V. 87. P. 159-163. https://doi.org/10.6028/jres.087.012

104. Gurevich V.M., Khodakovskii, Gorbunov V.E., Gavrichev K.S. A calorimeter for heat capacity measurements from 50 to 300 K: the heat capacities of kogarkoite Na₃SO₄F(Cr) at low temperatures // Geochem.Int.1999. V. 37. P. 367-377.

105. Гуревич В.М., Хлюстов В.Г. Калориметр для определения низкотемпературной теплоемкости минералов. Теплоемкость кварца в интервале 9–300 К // Геохимия. 1979. Т.6. С. 829.

106. Voskov A.L., Kutsenok I.B., Voronin G.F. CpFit program for approximation of heat capacities and enthalpies by Einshein-Planck function sum //Calphad. 2018. V. 61. P. 50.

https://doi.org/10.1016/j.calphad.2018.02.001

107. Voronin G.F., Kutsenok I.B. Universal method for approximating the standard thermodynamic functions of solids // J. Chem. Eng. Data. 2013. V. 58. P. 2083-2094.

https://doi.org/10.1021/je400316m

108. Коломиец Т.Ю., Тельнова Г.Б., Ашмарин А.А., Челпанов В.И., Солнцев К.А. Синтез и сперкание субмикронных частиц ИАГ:Nd, полученных из карбонатных прекурсоров // Неорган. матер. 2017. Т. 53. С. 890-899. https://doi.org/10.7868/S0002337X17080152

109. Гуськов В.Н., Гагарин П.Г., Гуськов А.В., Тюрин А.В., Гавричев К.С. Низкотемпературная теплоемкость гафната лантана // ЖНХ. 2019. Т.64. С. 1210-1214.

https://doi.org/10.1134/S0044457X19110060

110. Гуськов А.В., Гагарин П.Г., Гуськов А.В., Хорошилов А.В., Гавричев К.С. Теплоемкость и термическое расширение гафната лантана // ЖНХ. 2021. Т. 66. С. 907-910.

https://doi.org/10.1134/S0036023621070056

111. ICCD PDF 01-078-5592

112. Konings R.J.M., Beneš O., Kovács A., Manara D., Sedmidubský D., Gorokhov L., Iorish V.S.,

Shenyavskaya E., Osina E. The thermodynamic properties of the f-elements and their compounds. Part

2. The lanthanide and actinide oxides // J. Phys. Chem. Refer. Data. 2014. V. 43. P. 013101.

https://doi.org/10.1063/1.4825256

113. Pankratz L.B. Thermodynamic properties of elements and oxides // U.S. Bureau of MinesBulletin. 1982. V. 672. 509 P.

114. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. Термодинамические свойства Pr₂Hf₂O₇ в области низких температур // ЖНХ. 2022. Т. 67. С. 208-. https://doi.org/1031857/S0044457X22020052

115. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Хорошилов А.В., Гавричев К.С.. Теплоемкость и термическое расширение гафната празеодима // Неорг.материалы. 2022. Т. 58. С. 181. https://doi.org/10.31857/S0002337X22010055

116. Popa K., Jutier F., Wastin F., Konings R.J.M. The heat capacity of NdPO₄ // J. Chem. Thermodyn. 2006. V. 38. P. 1306-1311. https://doi.org/10.1016/j.jct.2006.02.006

117. Matsuhira K., Hinatsu Y., Tenya K., Amitsuka H., Sakakibara T. Low-Temperature Magnetic Properties of Pyrochlore Stannates // J. Phys. Soc. Jpn. 2002. V. 71. P. 1576–1582. http://dx.doi.org/10.1143/JPSJ.71.1576

118. Lau G.C., Freitas R.S., Ueland B.G., Muegge, B.D., Duncan E.L., Schiffer, P., Cava R.J. Zeropoint entropy in stuffed spin-ice // Nature Physics. 2006. V. 2. P. 249-253.

https://doi.org/10.1038/nphys270

119. Chirico R.D., Westrum E.F., Gruber J.B., Warmkessel J. Low-temperature heat capacities, thermophysical properties, optical spectra, and analysis of Schottky contributions to Pr(OH)₃ // J. Chem. Thermodyn. 1979. V. 11. P. 835. https://doi.org/10.1016/0021-9614(79)90064-8.

120. Hallas A. $Ho_2Ge_2O_7$ and $Pr_2Zr_2O_7$: A tale of two spin ices // 2013. University of Manitoba (Canada). 101 P.

121. Westrum E.F. Jr. Schottky conribution in chemical thermodynamics // J. Therm. Anal. 1985. V.30. P. 1209-1215. https://doi.org/10.1007/BF01914288

122. Gruber J.B., Justice B.H., Westrum E.F. Jr., Zandi B. Revisiting the thermophysical properties of the A-type hexagonal lanthanide sesquioxides between temperatures of 5 K and 1000 K // J.

Chem.Thermodyn. 2002. V. 34. P. 457-473. https://doi.org/10.1006/jcht.2001.0860

123. Thiriet C., Konings R.J.M., Javorsky P., Magnani N., Wastin F. The low temperature heat capacity of LaPO4 and GdPO4, the thermodynamic functions of the monazite-type LnPO4 series // J. Chem.Thermodyn.2005. V. 37. P. 131-139. https://doi.org/10.1016/j.jct.2004.07.031

124. Guskov V.N., Gagarin P.G., Guskov A.V., Tyurin A.V., Khoroshilov A.V., Gavrichev K.S. Heat capacity and thermal expansion of neodymium hafnate ceramics // Ceram. Int. 2019. V. 45. P. 20733-20737. https://doi.org/10.1016/j.ceramint.2019.07.057

125. Xu J., Anand V.K., Bera A.K., Frontzek, Abernathy, Casati N., Siemensmeyer K., Lake B.
Magnetic structure and crystal-field states of the pyrochloreantiferromagnet // Phys. Rev. B. 2015. V.
92 P. 224430-1 - 224430-12. https://doi.org/10.1103/PhysRevB.92.224430

126. Blöte H. W. J., Wielinga R.F., Huiskamp. Heat-capacity measurements on rare-earth double oxides R₂M₂O₇ //Physica. 1969. V. 43. P. 549-568. https://doi.org/10.1016/0031-8914(69)90187-6.

127. Matsuhira K., Sekine C., Paulsen C., Wakeshima M., Hinatsu Y., Kitazawa T, Kiuschi Y., Hiroi Z., Takagi S. Spin freezing in the pyrochlore antiferromagnet Pr₂Zr₂O₇ //J.Phys:Conference Series V.145 (2009) 012031. https://doi.org/10.1088/1748-6596/145/1012031

128. Shlyakhtina A.V., Kondrat'eva O.N., Nikiforova G.E., Shchegolikhin A.N., Stolbov D.N.,

Kolbanev I.V., Wenping Liang, Lyskov N.V. Study of $Nd_{2\pm x}Hd_{2\pm\delta}O_7$ system: The ionic and thermal transport properties // Mater. Res. Bull. 155 (2022) 111971.

https://doi.org/10.1016/j.materresbull.2022.111971

129. Гуськов А.В., Гагарин П. Г., Гуськов В. Н., Тюрин А. В., Гавричев К. С..

Термодинамические свойства Sm₂Hf₂O₇ // ЖНХ. 2021. Т.60. С. 1512-1518.

https://doi.org/10.31857/S0044457X2110007X

130. Гуськов А. В., Гагарин П. Г., Гуськов В. Н., Хорошилов А. В., Гавричев К. С. Теплоемкость и термическое расширение гафната самария // Неорган. материалы. 2021. Т. 57. С. 1073-1077. https://doi.org/10.31857/S0002337X21100043

131. Gagarin P.G., Tyurin A.V., Guskov V.N., A.V. Khoroshilov, G.E. Nikiforova, K.S. Gavrichev. Thermodynamic properties of p-Sm₂Zr₂O₇ // Inorgan. Mater. 2017. V. 53. P. 619-625.

https://doi.org/10.1134/S0020168517060048

132. Singh S., Saha S., Dhar S.R. et al. Manifestation of geometric frustration on magnetic and thermodynamic properties of the pyrochlores Sm₂X₂O₇ (X=Ti,Zr) // Phys. Rev. B: Condens. Matter Mater. Phys. 2008. V. 77. 054408. https://doi.org/10.1103/PhysRevB.77.054408

133. Chirico R.D., Westrum Jr E.F. Thermophysics of the lanthanide hydroxides I. Heat capacities of La(OH)₃, Gd(OH)₃, and Eu(OH)₃ from near 5 to 350 K. Lattice and Schottky contributions // J. Chem. Thermodyn. 12 (1980) 71–85. https://doi.org/10.1016/0021-9614(80)90118-4

134. Gavrichev K.S., Tyurin A.V., Guskov V.N., Gagarin P. G., Gus' kov A. V., Ryumin M.A. Low-Temperature Heat Capacity of M-Type Terbium Orthotantalate and Schottky Anomaly // Russ. J. Inorgan. Chem., 2020. V. 65. P. 655-662. https://doi.org/10.1134/S0036023620050083

135. Mikuśkiewicz M., Migas D., Moskal G., Synthesis and thermal properties of zirconate, hafnate and cerate of samarium // Surf. Coat. Tech. 354 (2018) 66–75.

https://doi.org/10.1016/j.surfcoat.2018.08.096.

136. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Гавричев К.С. Термодинамические функции гафната европия при 0 – 1300 К и аномалия Шоттки // Докл. РАН. Химия, науки о материалах. Т.502 (2022). С. 60-65. https://doi.org/1031857/S2686953522010058

137. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Хорошилов А.В., Гавричев К.С. Термическое расширение и термодинамические функции гафната европия при 298 – 1300 К // ЖНХ Т.66. 2020. С. 1593 – 1596. https://doi.org/10.31857/S0044457X21110088

138. Guskov V.N., Gavrichev K.S., Gagarin P.G., Guskov A.V. Thermodynamic Functions of Complex Zirconia Based Lanthanide Oxides—Pyrochlores $Ln_2Zr_2O_7$ (Ln = La, Pr, Sm, Eu, Gd) and Fluorites $Ln_2O_3 \cdot 2ZrO_2$ (Ln = Tb, Ho, Er, Tm) // Russ. J. Inorg. Chem. 64 (2019) 1265–1281. https://doi.org/10.1134/s0036023619100048

139. Gagarin P.G., Guskov A.V., Guskov V.N., Baldaev L.H., Sazonov E.G., Tyurin A.V., Gavrichev K.S. Thermodynamic properties of *M*-EuTaO₄ // Russ. J. Inorg. Chem. 65 (2020) 1863-1868.
https://doi.org/10.1134/S0036023620120037

140. Guskov V.N., Tyurin A.V., Guskov A.V., Gagarin P.G., Khoroshilov A.V., Gavrichev K.S. Thermal expansion and thermodynamic properties of gadolinium hafnate ceramics //Ceram. Int. 46 (2020) 12822-12827. https://doi.org/10.1016/j.ceramint.202002.052

141. Westrum E. F. Schottky contributions in chemical thermodynamics // Journal of Thermal Analysis, 30(6), 1209–1215 (1985); https://doi.org/10.1007/bf01914288

142. Guskov V.N., Khoroshilov A.V., Ryumin M.A., Kondrat'eva O.N., Guskov A.V., Gavrichev K.S.
Thermal expansion and thermodynamic properties of M`-YbTaO₄ ceramics // Ceram. Int. 46, (4),
5402-5406 (2020); https://doi.org/10.1016/j.ceramint.2019.10.296

143. Biswas A. A., Jana Y., Ghoshray A., Bandyopadhyay B., Mazumdar C. Effect of Single-ion Anisotropy on the Low-Temperature Spin Properties of Frustrated Gd₂Hf₂O₇ // International Conference on Magnetic Materials (ICMM-2010) AIP Conf. Proc. 1347, 301-305 (2011); https://doi.org/10.1063/1.3601841

144. Leitner J., Chuchvalec P., Sedmidubský D., Strejc A., Abrman P. Estimation of heat capacities of solid mixed oxides // Thermochimica Acta, 395(1-2), 27–46 (2002); . https://doi.org/10.1016/s0040-6031(02)00177-6

145. Гуськов А.В., Гагарин П.Г., Гуськов В.Н., Тюрин А.В., Хорошилов А.В., Гавричев К.С. Термодинамические функции гафната тербия // ЖНХ. Т. 66. 2021. С. 760 – 766. https://doi.org/10.31857/S0044457X21060106

146. Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Heat capacity and thermal expansion of terbium hafnate // Inorgan. mater. V. 57. 2021. P.745-748. https://doi.org/10.1134/S0020168521070074

147. Sibille R., Lhotel E., Hatnean M.C., Nilsen G.J., Ehlers G., Cervellino A., Ressouche E., Frontzek M., Zaharko O., Pomjakushin V., Stuhr U., Walker H.C., Adroja D.T., Luetkens H., Baines C., Amato A., Balakrishnan G., Fennell T., Kenzelmann M.. Coulomb spin liquid in anion-disordered pyrochlore Tb₂Hf₂O₇ // Nature Comm. 8:892. https://doi.org/ 10.1038/s41467-017-00905-w

148. Guskov A.V., Gagarin P.G., Guskov V.N., Tyurin A.V., Gavrichev K.S. Thermodynamic function of Dy₂O₃·2HfO₂ solid solution and the Schottky anomaly // Russ. J. Phys. Chem. A. 2022. V.
96. pp. 1831-1839. https://doi.org/10.1134/S003602442209014X

149. Guskov A.V., Gagarin P.G., Guskov V.N., Khoroshilov A.V., Gavrichev K.S. Thermal properties of solid solutions $Ln_2O_3 \cdot 2HfO_2$ (Ln = Dy, Ho, Er, Tm, Yb, Lu) at 300 – 1300 K // Ceram. Int. 47 (2021) 28004 – 28007. https://doi.org/10.1016/j.ceramint.2021.06.125

150. Casion J.D., Cooke A.H., Leask M.J.M., Thorp T.L., Wells M.R. Crystal growth and magnetic susceptibility of some rare-earth compounds // J. Mater. Sci. 1968. V. 3. P. 402-407. https://doi.org/10.1007/bf00550984.

151. Ramon J.G.A., Wang C.W., Ishida L., Bernando P.L., Leite M.M., Vichi F.M., Gardner J.S.,
Freitas R.S. Absence of spin-ice state in the disordered fluorite Dy₂Zr₂O₇ // Phys. Rev. B. 2019. V. 99.
214442. https://doi.org/10.1103/PhysRevB.99.214442

152. Ramirez A.P., Hayashi A., Cava R.J., Siddharthan R., Shastry B.S. Zero-point entropy in 'spin ice' // Nature. 1999. V. 399. P. 333-335. https://doi.org/10.1038/20619

153. Catanese C.A., Meissner H.E. magnetic ordering in Dy(OH)₃ and Ho(OH)₃ // Phys. Rev. B. V.8. P.2060 – 2068. DOI: 10.1103/Phys.RevB.8.2060

154. Bajenova I.A., Guskov A.V., Gagarin P.G., Khvan A.V., Gavrichev K.S. Experimental determination of the enthalpy of formation of the pyrochlore rare-earth hafnates // J. Am. Cheram. Soc. 2023. V. 106. P. 3777–3791. https://doi.org/ 10.1111/jace.19027

Рис. L1. Фазовые диаграммы систем RE – HfO₂, RE = La, Pr, Nd, Sm, Eu, Gd [1].

Рис. L2. Фазовые диаграммы систем $RE - HfO_2$, RE = Tb, Dy, Y, Ho, Er, Yb, Lu [1].

Рис .L3. Генетическая связь элементарной ячейки диоксида гафния (F) (а) и 1/8 элементарной ячейки RE₂Hf₂O₇ (пирохлор) (б). Показана вакансия кислорода и упорядоченное положение ионов RE³⁺ и Hf⁴⁺ в структуре пирохлора (б) [11].

Рис. L4. Фазовая диаграмма системы Tm₂O₃ – HfO₂ [65].

Рис. L5. Фазовая диаграмма Y₂O₃- HfO₂ [3].

Рис. L6. Фазовая диаграмма Yb₂O₃- HfO₂ [4].

Рис. L7. Аномальная теплоемкость $\frac{1}{2}(Dy_2O_3 \cdot 2ZrO_2)$ в области магнитного перехода, $C_P = C_{lat} - \frac{1}{2}C_p(Lu_2O_3 \cdot 2ZrO_2), C_N - расчетное значение ядерной теплоемкости <math>Dy_2O_3 \cdot 2ZrO_2)$ [76].

Рис. L8. Аномалия Шоттки у гидроксидов европия, празеодима и тербия [77]. (У гидроксида тербия наблюдается увеличение теплоемкости при понижении тмпературы, связанное с магнитным переходом.)

1 аолица L1. Своиства двоиных оксидов KL_2O_3 2111 O_2 [10].					
Двойной	Структура	<i>d</i> ,	T _{пл,} (±30)	$\alpha_{293} \times 10^{-6}$,	
оксид		г/см ³	K	K ⁻¹ (293 – 1173 K)	
$La_2O_3 \cdot 2HfO_2$	p	7.84	2560	7.85	
$Pr_2O_3 \cdot 2HfO_2$	p	7.90	2610	9.13	
Nd ₂ O ₃ ·2HfO ₂	p	8.11	2730	9.27	
Sm ₂ O ₃ ·2HfO ₂	p	8.20	2760	10.60	
Eu ₂ O ₃ ·2HfO ₂	p	8.29	2740	10.82	
Gd ₂ O ₃ ·2HfO ₂	p	8.34	2790	-	
Tb ₂ O ₃ ·2HfO ₂	f	-	2850	8.50	
Dy ₂ O ₃ ·2HfO ₂	f	8.40	2840	9.75	
Ho ₂ O ₃ ·2HfO ₂	f	8.45	2860	9.75	
$Er_2O_3 \cdot 2HfO_2$	f	8.48	2840	9.65	
Tm ₂ O ₃ ·2HfO ₂	f	8.57	2840	9.62	
Yb ₂ O ₃ ·2HfO ₂	f	8.68	2950	10.40	
Lu ₂ O ₃ ·2HfO ₂	f	8.79	2980	11.80	
$Y_2O_3 \cdot 2HfO_2$	f	6.80	2950	8.72	
*) -					

Таблица L1. Свойства двойных оксидов $RE_2O_3 \cdot 2HfO_2^{*}$ [16].

*) Формулы двойных оксидов приведены в соответствии с текстом оригинала.

ПРИЛОЖЕНИЕ S к главе «Результаты и обсуждение» РИСУНКИ

Рис. S1.1. Дифрактограмма гафната лантана (пирохлор), a = 10.772(1) Å, λ (CuK_{α}) =1.5418 Å.

Рис. S1.2. Морфология поверхности образца гафната лантана (пирохлор).

Рис. S2.1. Дифрактограмма гафната празеодима (пирохлор), a = 10.671(9) Å, λ (CuK_{α}) =1.5418

Рис. S2.2. Морфология поверхности образца гафната празеодима (пирохлор).

Рис. S3.1. Дифрактограмма гафната неодима (пирохлор) $a = 10.651 \pm 0.003$ Å, λ (CuK_{α}) =1.5418 Å.

Рис. S3.2. Морфология поверхности образца гафната неодима (пирохлор).

Рис. S4.1 Дифрактограмма образца Sm₂Hf₂O₇. Структурный тип пирохлора Fd3m, a = 10.580 Å.

Рис. S4.2. Микрофотография поверхности образца гафната самария.

Рис. S5.1. Дифрактограмма образца гафната европия (пирохлор), a = 10.541(4) Å.

Рис. S5.2. Морфология поверхности образца гафната европия (пирохлор).

Рис. S6.1. Дифрактограмма образца гафната гадолиния (пирохлор), *a* = 10.513 Å.

Рис. S6.2 Морфология поверхности образца гафната гадолиния (пирохлор).

Рис. S7.1. Дифрактограмма образца гафната тербия (пирохлор), *a* =10.455(4) Å.

Рис. S7.2 Морфология поверхности образца гафната тербия (пирохлор).

Рис. S8.1. Дифрактограмма образца твердого раствора Dy₂O₃·2HfO₂, структурный тип *Fm3m*, a = 5.215(2) Å, Cu K_{α} – излучение, $\lambda = 1.5418$ Å.

Рис. S8.2 Морфология поверхности образца твердого раствора Dy₂O₃·2HfO₂ (флюорит).

Рис. S9.1. Дифрактограмма образца твердого раствора Ho₂O₃·2HfO₂, структурный тип *Fm3m*, a = 5.198(7) Å, Cu K_{α} – излучение, $\lambda = 1.5418$ Å.

Рис. S9.2 Морфология поверхности образца твердого раствора Ho₂O₃·2HfO₂ (флюорит).

Рис. S10.1. Дифрактограмма образца твердого раствора $Er_2O_3 \cdot 2HfO_2$, структурный тип *Fm3m, a* = 5.185(2) Å, Cu K_{α} – излучение, λ = 1.5418 Å

Рис. S10.2 Морфология поверхности образца твердого раствора Er₂O₃·2HfO₂ (флюорит).

Рис. S11.1. Дифрактограмма образца твердого раствора Tm₂O₃·2HfO₂, структурный тип *Fm3m*, a = 5.170(7) Å, Cu K_{α} – излучение, $\lambda = 1.5418$ Å

Рис. S11.2. Морфология поверхности образца твердого раствора Tm₂O₃·2HfO₂ (флюорит).

Рис. S12.1. Дифрактограмма образца твердого раствора Yb₂O₃·2HfO₂, структурный тип *Fm3m*, a = 5.157(1) Å, Cu K_{α} – излучение, $\lambda = 1.5418$ Å

Рис. S12.2. Морфология поверхности образца твердого раствора Yb₂O₃·2HfO₂ (флюорит).

Рис.S13.1. Дифрактограмма образца твердого раствора Lu₂O₃·2HfO₂, структурный тип *Fm3m*, a = 5.146(2) Å, Cu K_{α} – излучение, $\lambda = 1.5418$ Å.

Рис.S13.2. Морфология поверхности образца твердого раствора $Lu_2O_3 \cdot 2HfO_2$ (флюорит).

ТАБЛИЦЫ

T	C _n	Т	$C_{\rm p}$	Τ	C _p
K	Дж/(моль•К)	Κ	Дж/(моль•К)	K	Дж/(моль•К)
Релаксационная кало	ориметрия		· · · ·		
2.084	0.01669	7.292	0.1190	25.42	10.555
2.312	0.01727	8.090	0.1659	28.22	13.801
2.567	0.01798	8.984	0.2418	31.36	17.637
2.849	0.01932	9.969	0.3541	34.81	22.009
3.162	0.02117	11.08	0.5382	38.63	26.926
3.508	0.0236	12.31	0.8265	42.88	32.540
3.893	0.0283	13.65	1.2651	47.59	38.944
4.331	0.0337	15.14	1.9199	52.83	45.691
4.793	0.0408	16.80	2.8781	58.66	53.229
5.321	0.0526	18.64	4.1251	64.86	63.512
5.907	0.0675	20.68	5.7762		
6.568	0.0894	22.90	7.9173		
Адиабатическая кале	ориметрия		1	•	
8.260	0.176	49.79	41.80	164.3	160.9
8.622	0.194	51.68	44.38	168.2	163.8
9.055	0.239	53.57	46.81	172.1	166.7
9.471	0.263	55.44	49.24	176.0	169.6
9.893	0.346	57.34	51.71	180.0	172.3
10.56	0.435	59.24	54.13	183.9	174.9
11.39	0.603	61.13	56.72	187.8	177.2
12.17	0.796	63.04	59.20	191.7	179.4
12.99	1.046	64.95	61.49	195.7	181.6
13.81	1.354	66.87	63.84	199.7	183.7
14.64	1.711	68.78	66.16	203.6	185.5
15.48	2.105	70.70	68.43	207.6	187.8
16.33	2.571	72.63	70.78	211.5	189.6
17.18	3.092	74.57	73.06	215.4	191.9
18.03	3.702	76.49	75.48	219.3	194.6
18.89	4.305	79.60	80.87	231.0	199.7
19.77	5.043	81.55	83.27	234.9	202.1
20.86	5.912	83.49	85.12	238.8	204.4
22.14	7.117	85.43	87.18	242.7	206.2
23.39	8.363	87.37	89.96	246.6	207.5
24.69	9.686	89.32	92.38	250.5	208.8
25.99	11.10	91.26	94.36	254.4	210.1
27.30	12.50	93.21	96.42	258.3	211.5
28.63	14.00	95.16	98.51	262.1	212.9
29.96	15.70	97.11	100.6	266.0	214.3
31.56	18.15	99.07	102.6	269.8	215.8
33.36	20.53	102.0	105.4	273.6	217.2

Табл. S.1.1. Экспериментальная теплоемкость гафната лантана.

25.10	22.52	105.0	100 5	277 4	2106
35.10	22.33	103.9	109.5	277.4	218.0
36.88	22.95	109.7	117.6	285.0	220.0
26.04	23.07	117.5	117.0	203.0	221.5
30.94	24.81	11/.5	121.3	288.7	222.0
38.67	27.49	121.4	125.2	292.5	223.7
38.76	27.17	125.2	129.0	296.2	224.7
40.47	29.80	129.1	132.6	299.9	225.8
40.57	29.57	133.0	136.0	303.5	226.7
42.29	32.17	136.9	139.4	307.2	227.5
42.39	31.88	140.9	142.7	310.8	228.4
44.11	34.51	144.8	145.8	314.4	229.3
44.23	34.39	148.7	148.9	318.0	230.1
45.97	36.04	152.6	152.0	321.5	231.1
46.08	36.79	156.5	154.9	325.1	231.7
47.93	39.21	160.4	157.9		
Лифференциан ная			107.9		
318 0	220 0		275.2	1318.0	201.2
328.0	222.5	828.0	275.2	1378.0	292.1
338.0	232.1	838.0	276.8	1328.0	292.1
348.0	237.0	848.0	277.6	1348.0	294.2
358.0	239.8	858.0	277.0	1358.0	294.6
368.0	237.0	868.0	278.1	1368.0	295.1
378.0	2437	878.0	278.8	1378.0	295.8
388.0	245.7	888.0	279.5	1388.0	296.1
398.0	246.9	898.0	279.6	1398.0	296.2
408.0	248.5	908.0	279.4	1408.0	296.0
418.0	249.9	918.0	279.5	1418.0	295.9
428.0	251.2	928.0	279.9	1428.0	295.5
438.0	252.3	938.0	281	1438.0	294.8
448.0	253.2	948.0	281.6	1448.0	294.5
458.0	254.3	958.0	281.7	1458.0	294.8
468.0	255.6	968.0	282.3	1468.0	295.6
478.0	256.8	978.0	283.3	1478.0	296.4
488.0	257.8	988.0	283.5	1488.0	297.2
498.0	258.6	998.0	283.3	1498.0	297.1
508.0	259.4	1008.0	283.2	1508.0	296.8
518.0	260.0	1018.0	283.5	1518.0	297.1
528.0	260.7	1028.0	283.7	1528.0	298.8
538.0	261.4	1038.0	284	1538.0	299.7
548.0	262.2	1048.0	284.2	1548.0	300.4
558.0	263.1	1058.0	284.4	1558.0	300.6
568.0	263.9	1068.0	284.3	1568.0	300.5
578.0	264.6	1078.0	284.6	1578.0	300.2
588.0	265.5	1088.0	284.9	1588.0	301
598.0	266.2	1098.0	285.9	1598.0	300.9
608.0	266.6	1108.0	286.7	1608.0	300.4
618.0	267.1	1118.0	287.5	1618.0	299.9
628.0	267.4	1128.0	287.9	1628.0	300.0
638.0	267.8	1138.0	288.2	1638.0	300.6

648.0	268.2	1148.0	288.0	1648.0	302.0
658.0	268.6	1158.0	287.6	1658.0	303.2
668.0	268.8	1168.0	287.8	1668.0	303.4
678.0	269.1	1178.0	288.1	1678.0	302.2
688.0	269.5	1188.0	288.7	1688.0	301.8
698.0	270.1	1198.0	289.1	1698.0	302.1
708.0	270.7	1208.0	289.1	1708.0	302.6
718.0	271.3	1218.0	288.8	1718.0	303.8
728.0	271.6	1228.0	288.8	1728.0	305.1
738.0	271.6	1238.0	289.5	1738.0	305.0
748.0	272.0	1248.0	290.6	1748.0	304.6
758.0	272.7	1258.0	291.2	1758.0	304.5
768.0	273.8	1268.0	291.6	1768.0	304.7
778.0	274.2	1278.0	291.8	1778.0	305.1
788.0	274.2	1288.0	291.5	1788.0	305.7
798.0	274.6	1298.0	291.1	1798.0	305.8
808.0	275.0	1308.0	291.0		

Таблица S1.2 Коэффициенты сглаживающих функций теплоемкости La₂Hf₂O₇.

$C_{\rm p} = \Sigma a_i \times T^i \qquad 0 - 35 \ {\rm K}$							
i	a_i		δa_i				
0	0		-				
1	0.00552		0.0215				
2	0.00104		5.7179×10 ⁻⁴				
3	-2.6786×10-4	4	7.7392×10 ⁻⁵				
4	1.8770×10 ⁻⁶		1.9032×10 ⁻⁵				
5	8.1673×10 ⁻⁶		1.7935×10 ⁻⁶				
6	-4.3332×10 ⁻⁷	7	6.9524×10 ⁻⁸				
7	6.3463×10 ⁻⁹		9.6411×10 ⁻¹⁰				
CpFit	20-100	K					
α	dα	sα	θ	dΘ	sӨ		
1.719173	0.25597	0.129314	111.0653	6.29508	3.18024		
4.166443	0.482359	0.243685	273.6605	26.0109	13.1405		
5.311944	1.68672	0.852121	674.1952	140.811	71.1367		
CpFit	77-330	K	1				
α	dα	sα	θ	dΘ	sӨ		
1.969199	0.070166	0.035501	5288.417	172.973	87.5168		
11.19658	0.026538	0.013427	492.3588	5.84116	2.95537		

CpFit 320-1800K						
α	dα	sα	θ	dΘ	sӨ	
11.26146	0.027434	0.01388	500.0344	5.92744	2.99902	
2.034562	0.072798	0.036832	5295.962	173.533	87.7998	

Таблица S 2.1. Экспериментальная теплоемкость гафната празеодима.

T	Cp	T	Cp	T	Cp
K	Дж/(моль∙К)	K	Дж/(моль∙К)	K	Дж/(моль∙К)
Релакса	щионная калорим	етрия			
34.97	26.15	13.80	3.013	5.36	2.249
31.17	20.30	12.29	2.450	4.77	2.359
27.69	15.89	10.94	2.131	4.23	2.487
24.63	12.85	9.71	1.961	3.77	2.597
21.92	9.639	8.63	1.920	3.36	2.710
19.50	7.095	7.63	1.947	2.99	2.776
17.37	5.249	6.79	2.025	2.67	2.850
15.47	3.915	6.03	2.128	2.39	2.894
Адиаба	тическая калорим	етрия			
4.56	2.29	52.19	49.66	150.9	157.0
4.63	2.41	53.85	51.84	154.4	159.8
4.74	2.40	55.50	53.97	157.8	162.5
4.85	2.35	57.16	56.07	161.3	165.2
4.97	2.34	58.82	58.20	164.8	167.9
5.17	2.28	60.48	60.39	168.3	170.4
5.45	2.23	62.13	62.61	171.8	172.9
5.74	2.18	63.80	64.75	175.3	175.4
6.03	2.12	65.46	66.73	178.7	177.8
6.44	2.03	67.12	68.79	182.3	180.2
7.05	1.99	68.78	70.91	185.8	182.5
7.84	1.93	70.44	72.82	189.3	184.7
8.78	1.88	72.30	75.09	192.8	186.9
9.71	1.91	74.36	77.50	196.3	189.1
10.62	2.00	76.43	80.19	199.8	191.2
11.51	2.16	78.49	82.78	203.9	193.6
12.46	2.43	80.56	85.17	208.3	196.1

-		1	1	1	1
13.33	2.71	82.63	87.46	212.6	198.5
14.20	3.07	84.71	89.46	217.0	200.9
15.05	3.49	86.78	92.02	221.3	202.8
15.90	3.99	88.85	94.89	225.6	205.0
16.75	4.56	90.93	97.03	229.8	207.3
17.58	5.17	86.20	92.37	234.2	209.3
18.41	5.86	88.41	94.92	238.5	211.5
19.25	6.64	90.63	97.46	242.8	213.6
20.07	7.40	92.85	99.99	247.1	215.8
21.38	8.73	95.08	102.5	251.3	217.7
22.95	10.50	97.32	105.0	255.6	219.5
24.53	12.35	99.57	107.5	259.8	221.3
26.11	14.31	102.5	110.6	263.9	223.1
27.70	16.32	105.9	114.4	268.1	224.8
29.30	18.41	109.4	118.1	272.3	226.4
30.91	20.67	112.9	121.7	276.4	228.0
32.52	22.91	106.7	115.2	280.5	229.6
34.14	25.04	110.6	119.3	284.6	231.0
35.76	27.22	114.2	123.1	288.7	232.6
37.39	29.63	117.8	126.7	292.7	234.1
39.02	31.90	121.3	130.3	296.8	235.4
40.66	34.10	124.9	133.7	300.7	236.8
42.30	36.31	128.4	137.2	304.6	238.2
43.94	38.51	132.0	140.5	311.0	240.3
45.58	40.75	135.6	143.8	318.4	242.7
47.24	43.01	139.2	147.0	324.8	244.6
48.89	45.25	142.8	150.2	331.8	246.7
50.54	47.47	146.5	153.3	338.4	248.6
Диффере	нциальная сканир	ующая кало	ориметрия		
317	245.0	817	290.1	1317	311.7
327	247.5	827	290.9	1327	311.7
337	249.5	837	291.7	1337	311.3
347	251.6	847	292.2	1347	311.4
357	253.4	857	292.9	1357	312.0
367	255.0	867	293.2	1367	312.8
377	256.5	877	293.5	1377	313.2

387	258.0	887	293.5	1387	313.0
397	259.3	897	294.0	1397	312.9
407	260.5	907	294.7	1407	312.0
417	261.9	917	294.0	1417	312.2
427	263.1	927	294.4	1427	312.8
437	264.0	937	295.8	1437	312.8
447	264.7	947	296.4	1447	314.0
457	265.8	957	296.8	1457	314.9
467	267.0	967	297.5	1467	316.1
477	268.0	977	297.6	1477	317.5
487	268.7	987	297.8	1487	317.9
497	269.6	997	298.3	1497	318.7
507	270.5	1007	299.0	1507	318.5
517	271.4	1017	300.3	1517	319.2
527	272.4	1027	300.3	1527	318.9
537	273.4	1037	300.2	1537	318.4
547	274.0	1047	300.5	1547	318.8
557	274.7	1057	300.9	1557	319.1
567	275.4	1067	301.5	1567	318.9
577	276.1	1077	301.9	1577	320.0
587	276.6	1087	301.4	1587	319.0
597	277.4	1097	301.8	1597	319.4
607	278.0	1107	302.3	1607	319.5
617	278.7	1117	303.3	1617	318.7
627	279.7	1127	304.6	1627	320.0
637	280.5	1137	305.6	1637	321.0
647	281.3	1147	305.7	1647	321.5
657	282.2	1157	306.1	1657	321.2
667	282.9	1167	306.1	1667	322.4
677	283.2	1177	306.5	1677	325.0
687	284.1	1187	307.1	1687	325.4
697	284.6	1197	307.1	1697	326.0
707	284.5	1207	307.7	1707	325.8
717	284.1	1217	307.4	1717	325.5
727	284.2	1227	306.4	1727	325.6
737	284.3	1237	306.6	1737	323.9

747	284.9	1247	306.9	1747	324.4
757	286.0	1257	307.5	1757	323.9
767	286.8	1267	308.5	1767	327.2
777	287.5	1277	308.9	1777	326.2
787	287.9	1287	309.3	1787	327.0
797	288.3	1297	309.4	1797	327.0
807	288.9	1307	310.3	1807	327.5

Таблица S2.2. Коэффициенты аппроксимирующего полинома $C_p(\mbox{Дж/(моль·K)}) = \Sigma A_i \times [1 - \exp(-0.001 \times T)]^i$ для интервала температуры 3.0 – 345 К и CpFit (345-1807 K).

	_
i	A _i
0	0.381986
1	-0.69561
2	-2.04339
3	4.640465
4	-2.38401
5	5.74687
6	-8.67931
7	8.740106
8	-6.02801
9	2.860411
10	-8.57257
11	1.787394
12	-2.03701
13	9.631161

α	dα	sα	θ	dΘ	sӨ
2.55281338394004	0.0775338	0.0392499	4859.4130828916	153.99	77.9542
11.6931978623219	0.0358985	0.0181729	475.463512095897	6.02983	3.05248

Таблица S3.1. Экспериментальная теплоемкость гафната неодима.

Т	Cp	Т	Cp	Т	$C_{\rm p}$
Κ	Дж/(моль·К)	Κ	Дж/(моль•К)	Κ	Дж/(моль·К)
Релаксационна	ая калориметрия	A			
2.431	1.183	6.087	0.474	15.33	2.705
2.664	1.054	6.689	0.481	16.79	3.635
2.919	0.936	7.333	0.502	18.42	4.742
3.200	0.832	8.042	0.551	20.18	6.193
3.508	0.744	8.808	0.633	22.11	7.996
3.846	0.665	9.672	0.759	24.24	10.21
4.217	0.600	10.64	0.931	26.52	12.42
4.645	0.546	11.65	1.190	29.09	16.29
5.065	0.510	12.77	1.553	31.80	19.86

5.552	0.482	13.99	2.027	34.90	24.08
Адиабатическ	ая калориметри	Я			
6.151	0.2908	52.19	50.677	154.5	168.20
6.961	0.2821	54.09	53.722	158.4	171.02
7.377	0.2915	55.97	56.522	162.3	173.85
7.823	0.3121	57.86	59.361	166.2	176.56
8.269	0.3376	59.75	62.292	170.1	179.30
8.716	0.3713	61.65	65.247	174.1	181.99
9.160	0.4184	63.56	68.233	178.0	184.47
9.603	0.4754	65.48	71.100	181.9	186.95
10.05	0.5353	67.39	73.859	185.8	189.21
10.75	0.6306	69.30	76.597	189.7	191.18
11.61	0.8079	71.23	79.732	193.8	193.17
12.44	1.0272	73.16	82.535	197.7	195.16
13.28	1.2832	75.08	85.353	201.7	196.78
14.12	1.6097	77.01	88.182	205.6	198.76
14.98	1.9863	77.99	90.344	209.6	200.42
15.84	2.4454	79.38	91.924	213.5	202.39
16.70	2.9790	81.34	94.588	233.0	211.06
17.56	3.5670	83.28	96.903	236.9	213.25
18.44	4.2110	85.23	99.244	240.8	215.49
19.31	4.9062	87.18	102.39	244.7	216.54
20.19	5.7307	89.12	105.07	248.6	217.71
21.35	6.7898	91.07	107.43	252.5	218.82
22.65	8.1436	93.02	109.73	256.4	220.00
23.90	9.4842	94.98	112.01	260.2	221.21
25.20	10.929	96.93	114.33	264.1	222.45
26.51	12.443	98.89	116.62	267.9	223.74
27.83	14.060	100.8	118.90	271.7	225.06
29.20	15.900	103.8	121.83	275.6	226.28
30.53	17.659	107.7	126.26	279.3	227.54
32.11	20.229	111.5	130.58	283.1	228.73
33.93	22.832	115.4	134.71	286.9	229.86
35.70	25.178	119.3	138.68	290.6	230.89
37.48	27.979	123.2	142.50	294.4	231.84
39.28	30.619	127.1	146.21	298.1	232.77
41.10	33.271	131.0	149.76	301.8	233.68
42.91	35.917	134.9	153.13	305.5	234.38
44.74	38.777	138.8	156.32	309.1	235.15
46.59	41.639	142.7	159.49	312.7	235.92
48.45	44.449	146.6	162.46	316.3	236.66
50.31	47.392	150.6	165.40	319.9	237.43
Дифференциа	льная сканирую	щая калоримет	рия		
317	236.8	817	289.1	1317	312.0
327	239.0	827	289.7	1327	312.7
337	241.6	837	290.3	1337	310.6

	1	1	1	1	1
347	244.2	847	290.9	1347	312.0
357	246.4	857	291.6	1357	312.8
367	248.6	867	292.0	1367	314.4
377	250.6	877	292.6	1377	315.6
387	252.4	887	292.7	1387	316.4
397	254.0	897	293.4	1397	317.3
407	255.5	907	294.2	1407	316.7
417	257.0	917	294.4	1417	316.4
427	258.4	927	294.8	1427	316.5
437	259.5	937	295.3	1437	316.2
447	260.6	947	295.6	1447	316.7
457	261.9	957	295.6	1457	316.8
467	263.2	967	295.8	1467	317.0
477	264.2	977	296.0	1477	317.9
487	265.2	987	296.4	1487	319.0
497	266.2	997	297.0	1497	319.8
507	267.3	1007	297.2	1507	320.1
517	268.2	1017	297.9	1517	321.1
527	269.1	1027	298.4	1527	319.8
537	269.8	1037	298.7	1537	319.9
547	270.4	1047	299.1	1547	320.9
557	271.3	1057	299.8	1557	321.8
567	272.4	1067	300.3	1567	322.2
577	273.2	1077	300.6	1577	322.2
587	273.7	1087	300.7	1587	321.2
597	274.3	1097	301.1	1597	321.9
607	275.1	1107	301.4	1607	324.0
617	275.8	1117	302.4	1617	325.1
627	276.5	1127	303.3	1627	326.4
637	277.3	1137	304.3	1637	327.3
647	278.2	1147	304.8	1647	327.6
657	279.0	1157	305.4	1657	326.9
667	279.6	1167	305.4	1667	326.6
677	280.1	1177	305.9	1677	326.8
687	280.7	1187	306.0	1687	325.4
697	281.4	1197	306.1	1697	326.0
707	281.7	1207	306.4	1707	326.9
717	282.1	1217	306.9	1717	328.6
727	282.5	1227	307.6	1727	331.4
737	283.0	1237	308.4	1737	331.2
747	283.8	1247	309.5	1747	331.3
757	284.7	1257	310.3	1757	331.1
767	285.2	1267	310.8	1767	330.4
777	286.0	1277	310.5	1777	330.5
787	287.0	1287	309.9	1787	330.8
797	287.8	1297	310.3	1797	331.6

807 288.2 1307 310.7 1807 333.8

Таблица S3.2. Параметры сглаживающих функций теплоемкости гафната неодима.

2.5-35 K									
$Cp=\Sigma A_i T^i$									
0	1.806	1.806							
1	-0.3523								
2	0.01622								
3	0.0008034								
4	-0.00001163								
5	-0.000000396	1							
20-1800) K								
CpFit									
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K				
4.824	2.807	1.425	10491	2809	1427				
1.879	0.5103	0.2592	4337	632.1	321.0				
3.970	0.6114	0.3105	496.9	76.33	38.76				
1.518	0.4026	0.2045	104.9	9.395	4.771				
4.196	0.7012	0.3561	240.5	31.85	16.18				
2.073	0.4533	0.2302	1141	141.5	71.87				

Т	C _p	Τ	C _p	T	Cp
K	Дж/(моль·К)	K	Дж/(моль·К)	K	Дж/(моль•К)
Релаксацио	нная калоримет	рия			
2.100	1.564	6.022	0.372	17.417	4.122
2.334	1.366	6.706	0.337	19.349	5.964
2.593	1.229	7.495	0.335	21.413	8.176
2.880	1.007	8.336	0.357	23.849	11.388
3.200	0.872	9.270	0.443	26.445	14.726
3.556	0.739	10.336	0.590	29.513	18.800
3.946	0.649	11.433	0.857	32.811	23.794
4.385	0.542	12.729	1.273	36.465	29.352
4.872	0.475	14.112	1.906		
5.417	0.407	15.678	2.858		
Адиабатич	еская калоримет	рия			
6.175	0.4182	55.96	57.149	170.0	170.85
6.869	0.3875	57.85	59.634	173.9	173.71
7.305	0.3875	59.75	62.229	177.8	176.48
7.757	0.3960	61.66	64.833	181.7	179.14
8.209	0.4173	63.57	67.270	185.6	181.55
8.662	0.4511	65.48	69.798	189.5	183.83
9.109	0.4876	67.40	72.112	193.6	186.13
9.553	0.5408	69.32	74.495	197.5	188.64
10.00	0.6148	71.24	77.266	201.5	190.62
10.72	0.7273	73.18	79.590	205.4	192.47
11.58	0.9259	75.11	81.985	209.3	194.62
12.38	1.1571	77.03	84.704	213.3	197.14
13.22	1.4584	77.96	86.356	217.2	199.45
14.06	1.8254	79.35	87.611	221.0	203.02
14.91	2.2626	81.31	89.870	224.9	204.96
15.76	2.7679	83.25	91.890	228.8	206.01
16.62	3.3741	85.20	93.823	232.7	207.69
17.48	4.0444	87.15	96.475	236.6	210.67
18.35	4.7545	89.09	98.942	240.5	213.60
19.22	5.5717	91.04	100.94	244.4	215.39
20.10	6.4131	93.00	102.98	248.3	217.19
21.26	7.6081	94.95	105.01	252.1	218.96
22.55	9.0876	96.90	107.01	256.0	220.85
23.79	10.568	98.86	109.10	259.8	222.57
25.09	12.218	100.8	111.18	263.7	224.30
26.41	13.851	103.8	113.83	267.5	226.02
27.74	15.543	107.6	117.85	271.3	227.75
29.07	17.478	111.5	121.85	275.1	229.29
30.40	19.346	115.4	125.73	278.9	230.82
32.02	22.088	119.3	129.48	282.7	232.30

Таблица S4.1. Экспериментальная теплоемкость гафната самария.

33.84	24.754	123.1	133.18	286.5	233.61
35.61	27.217	127.0	136.70	290.2	234.96
37.40	30.042	130.9	140.25	294.0	236.12
39.21	32.718	134.8	143.53	297.7	237.11
41.03	35.381	138.7	146.86	301.4	238.07
42.86	37.949	142.6	150.00	305.1	239.19
44.70	40.564	146.5	153.12	308.7	240.31
46.55	43.374	150.5	156.15	312.3	241.03
48.41	46.083	154.4	159.09	316.0	241.83
50.27	48.884	158.3	162.00	319.6	242.76
52.16	51.818	162.2	164.96	323.1	243.51
54.07	54.557	166.1	167.89		
Дифферент	иальная сканир	ующая кало	риметрия		
312	241.0	812	298.5	1312	316.9
322	243.3	822	299.6	1322	318.3
332	246.2	832	300.2	1332	317.7
342	249.0	842	300.3	1342	317.3
352	251.7	852	301.3	1352	317.7
362	254.5	862	301.8	1362	318.5
372	257.0	872	302.5	1372	319.7
382	259.5	882	302.3	1382	320.1
392	261.3	892	302.8	1392	321.1
402	263.3	902	302.3	1402	319.9
412	264.9	912	302.6	1412	319.0
422	266.5	922	301.7	1422	320.6
432	267.2	932	301.6	1432	320.7
442	269.3	942	302.4	1442	320.6
452	271.5	952	302.9	1452	321.1
462	271.8	962	305.2	1462	323.1
472	273.4	972	305.9	1472	323.5
482	274.3	982	306.2	1482	324.4
492	275.1	992	306.8	1492	325.6
502	276.1	1002	307.2	1502	325.0
512	277.0	1012	307.6	1512	324.8
522	277.9	1022	307.6	1522	324.8
532	278.7	1032	307.7	1532	323.0
542	279.4	1042	308.6	1542	323.3
552	279.9	1052	308.2	1552	324.1
562	280.7	1062	308.3	1562	324.7
572	282.1	1072	309.1	1572	326.0
582	282.8	1082	308.7	1582	325.8
592	283.8	1092	308.1	1592	324.9
602	284.7	1102	308.0	1602	326.4
612	285.3	1112	309.3	1612	326.3
622	286.0	1122	311.3	1622	327.2
632	286.5	1132	312.0	1632	329.6

642	287.5	1142	312.1	1642	330.6
652	289.0	1152	311.3	1652	329.8
662	289.0	1162	311.6	1662	329.9
672	289.7	1172	310.7	1672	331.2
682	290.3	1182	310.7	1682	331.3
692	291.6	1192	311.1	1692	330.3
702	292.2	1202	310.9	1702	331.4
712	293.1	1212	311.7	1712	329.5
722	293.6	1222	312.4	1722	331.8
732	293.8	1232	312.3	1732	329.1
742	294.5	1242	312.6	1742	330.7
752	295.5	1252	312.5	1752	330.8
762	296.3	1262	313.1	1762	332.6
772	296.8	1272	313.6	1772	334.4
782	297.6	1282	315.2	1782	334.2
792	298.1	1292	315.2	1792	335.2
802	298.3	1302	315.6	1802	332.6

<u>Таблица S4.2.</u> Параметры сглаживающих функций теплоемкости гафната самария.

2-44 K								
$C_{\rm p} = \Sigma A_{\rm i} * (1 - \exp(-0.001 * T))^{\rm i}$								
Ι	А							
0	2.382							
1	-533.5							
2	29781							
3	630552							
4	-13220913							
25-1800	K							
CpFit								
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K			
4.691	0.1575	0.08005	320.1	14.89	7.565			
2.514	0.1983 0.1008 118.7 4.442 2.257							
2.584	0.1436	0.07296	5930	221.6	112.6			
5.125	0.2023	0.1028	842.7	19.30	9.808			

Таблица S5.1. Экспериментальная теплоемкость гафната европия.

Т	Cp	Т	Cp	T	Cp		
K	Дж/(моль•К)	Κ	Дж/(моль•К)	Κ	Дж/(моль•К)		
Релаксационная калориметрия							
2.435	0.01482	7.421	0.1127	20.018	5.062		
2.721	0.01512	8.305	0.1689	21.292	6.114		
3.038	0.01714	9.258	0.2561	22.651	7.358		
3.397	0.01904	10.331	0.3983	24.103	8.787		

3 793	0.02228	11 529	0.6218	25 570	10 177
4.237	0.02677	12.870	0.9803	27.307	12.285
4.729	0.03305	14.372	1.5316	29.007	14.052
5.286	0.04275	16.049	2.3378	30.865	16.481
5.905	0.05745	17.916	3.4853	32.787	19.092
6.612	0.0789	19.996	4.9582	34.971	21.859
Алиабатиче	ская калоримет	<u>ия</u>		5 119 / 1	21.009
9.567	0.4352	67.42	68.541	180.2	185.0
10.513	0.5417	69.34	71.036	184.1	187.7
11.340	0.6901	71.28	74.152	188.0	190.3
12.146	0.8804	73.21	76.709	191.9	192.6
12.992	1.113	75.12	79.404	195.9	194.7
13.840	1.382	77.05	82.131	199.9	197.1
14.696	1.725	78.98	85.270	203.8	199.3
15.555	2.117	80.91	87.931	207.8	201.0
16.420	2.580	78.41	85.262	211.7	203.7
17.290	3.131	79.81	86.284	215.6	205.8
18.705	4.257	81.76	88.838	219.5	208.9
19.333	4.604	83.71	90.991	231.2	213.9
20.266	5.343	85.65	93.189	235.1	216.4
21.431	6.358	87.60	96.523	239.0	218.8
22.719	7.599	89.54	98.955	242.9	220.5
23.966	8.803	91.49	101.24	246.7	221.8
25.282	10.139	93.44	103.41	250.6	223.1
26.583	11.595	95.39	105.69	254.5	224.5
27.908	13.012	97.35	107.99	258.3	225.9
29.249	14.533	99.30	110.26	262.2	227.3
30.582	16.183	102.24	113.12	266.0	228.9
32.189	18.833	106.12	117.74	269.8	230.4
33.997	21.041	109.98	122.15	273.6	232.1
35.758	23.213	113.86	126.55	277.4	233.5
37.547	25.847	117.73	130.84	281.1	235.9
39.346	28.323	121.61	134.93	284.8	236.8
41.159	30.682	125.50	138.94	288.6	238.2
42.981	33.227	129.40	142.83	292.3	239.5
44.811	35.773	133.30	146.52	296.0	240.6
46.653	38.441	137.20	150.06	299.6	242.0
48.504	41.175	141.10	153.47	303.2	242.6
50.360	43.944	145.01	156.79	306.9	243.8
52.250	46.985	148.92	160.13	310.5	244.8
54.137	49.748	152.83	163.30	314.0	245.7
56.013	52.422	156.75	166.47	317.6	246.7
57.902	55.151	160.65	169.57	321.1	247.6
59.790	57.812	164.57	172.80	324.6	248.6
61.691	60.639	168.48	175.92	328.1	249.2
63.599	63.376	172.39	179.12		

65.510	66.048	176.30	182.06		
Дифференци	альная сканиру	лощая калорим	тетрия		•
317	246.6	817	295.0	1317	315.5
327	249.3	827	295.6	1327	315.8
337	251.9	837	296.1	1337	315.9
347	254.0	847	296.4	1347	315.6
357	256.1	857	297.2	1357	315.3
367	258.3	867	297.2	1367	315.7
377	260.6	877	297.5	1377	316.0
387	262.3	887	298.1	1387	315.1
397	263.7	897	297.8	1397	314.0
407	264.9	907	298.1	1407	314.2
417	266.4	917	297.9	1417	314.1
427	267.5	927	296.2	1427	315.4
437	268.2	937	296.9	1437	315.7
447	269.0	947	298.2	1447	315.3
457	270.1	957	299.2	1457	319.8
467	271.1	967	300.4	1467	321.9
477	272.0	977	300.4	1477	322.2
487	272.7	987	300.2	1487	321.9
497	273.5	997	301.4	1497	321.9
507	274.6	1007	302.2	1507	322.2
517	275.6	1017	302.7	1517	322.8
527	276.4	1027	302.2	1527	320.1
537	277.6	1037	302.9	1537	320.2
547	278.3	1047	303.6	1547	320.3
557	279.2	1057	302.6	1557	320.5
567	280.3	1067	302.7	1567	320.7
577	281.4	1077	303.8	1577	321.9
587	282.0	1087	303.1	1587	319.4
597	283.1	1097	303.0	1597	319.6
607	284.0	1107	304.5	1607	320.9
617	284.6	1117	306.7	1617	322.2
627	285.7	1127	308.5	1627	321.6
637	285.7	1137	309.4	1637	324.9
647	286.4	1147	309.2	1647	327.6
657	287.1	1157	309.4	1657	327.8
667	287.0	1167	308.6	1667	327.5
677	286.8	1177	308.4	1677	328.1
687	287.8	1187	308.3	1687	328.8
697	288.4	1197	307.9	1697	328.7
707	288.3	1207	308.6	1707	324.7
717	288.1	1217	309.6	1717	325.3
727	288.8	1227	311.4	1727	327.9
737	289.3	1237	312.1	1737	324.5
747	290.1	1247	311.0	1747	325.9

757	291.0	1257	311.1	1757	326.1
767	291.8	1267	312.3	1767	329.0
777	292.7	1277	311.4	1777	329.9
787	292.7	1287	311.1	1787	330.8
797	293.5	1297	311.1	1797	329.2
807	294.0	1307	312.7		

Таблица S5.2. Параметры сглаживающих функций теплоемкости гафната европия.

1-30 K								
$C_{\rm p}=\Sigma A_{\rm i}$	$C_{p} = \Sigma A_{i} T^{i}$							
0	0.007977							
1	0.005171							
2	-0.00004652							
3	-0.0001561							
4	0.00002999							
5	0.000004201							
6	-0.000002866							
7	0.00000005516							
8	-0.000000000283	35						
20-1800	K							
CpFit								
α	$\Delta(\alpha)$	$s(\alpha)$	θ / Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K			
1.871	0.3822	0.1941	115.9	9.901	5.028			
2.562	0.1545	0.07847	5315	255.1	129.6			
4.996	0.2937	0.1491	290.6	23.48	11.92			
5.079	0.4062	0.2063	716.3	28.87	14.66			

Τ	C _p	T	C _p	T	C _p
K	Дж/(моль·К)	K	Дж/(моль·К)	K	Дж/(моль·К)
Релаксацио	нная калоримет	рия			
2.516	8.429	6.578	2.863	17.33	3.895
2.687	8.092	7.056	2.632	18.57	4.646
2.877	7.522	7.564	2.416	19.88	5.575
3.076	7.030	8.105	2.247	21.27	6.683
3.290	6.535	8.685	2.102	22.82	7.751
3.527	6.070	9.304	1.985	24.42	9.681
3.775	5.629	9.987	1.909	26.18	11.134
4.043	5.180	10.71	1.884	28.04	13.096
4.332	4.774	11.46	1.904	29.97	15.636
4.642	4.403	12.33	2.001	32.23	18.300
4.975	4.041	13.18	2.157	34.57	21.051
5.353	3.645	14.12	2.438	37.04	24.111
5.717	3.401	15.11	2.774		
6.126	3.140	16.21	3.276		
Адиабатич	еская калоример	ИЯ			
13.19	2.309	85.29	81.75	142.4	136.7
14.16	2.488	85.74	82.29	145.7	140
15.04	2.755	86.63	83.59	145.8	140.6
15.91	3.079	87.47	84.32	149.6	144.4
16.76	3.485	87.89	84.52	153.1	146.9
17.61	3.952	88.69	86.21	154.4	148.2
18.46	4.496	89.64	87.76	156.6	150.2
19.31	5.130	90.04	88.03	158.3	151.2
20.16	5.776	90.76	88.15	160.2	152.2
21.49	6.812	91.82	89.19	161.8	153.4
23.07	8.257	92.2	89.48	165.3	155.9
24.65	9.779	92.83	90.31	173.3	161.1
26.23	11.43	94.01	91.97	177.2	163.7
27.82	13.15	94.37	91.98	180.7	166.1
29.42	14.99	94.90	92.48	184.2	168.4
31.01	16.99	96.21	94.58	187.7	171.4
32.61	18.99	96.55	94.98	191.2	172.6
34.22	20.90	96.97	94.71	194.7	175.1
35.84	22.89	98.45	96.22	198.3	177.3
37.46	25.07	98.74	96.81	202.2	179.6
39.08	27.16	99.04	96.72	206.7	182.2
40.7	29.20	100.7	98.67	211.1	184.7
42.33	31.23	100.9	99.00	215.4	187.1
43.97	33.29	101.7	99.35	219.8	189.5
45.6	35.40	101.8	100.2	224.2	191.8
47.25	37.53	103.5	100.6	228.5	193.9
48.89	39.67	104.9	101.4	232.9	196.3

Таблица S6.1. Экспериментальная теплоемкость гафната гадолиния.

50.53	41.77	105.1	102.6	237.4	198.7
52.17	43.82	108.1	105.4	241.8	201.1
53.82	45.90	108.4	105.8	246.1	203.7
55.47	47.89	108.4	106.0	250.4	205.3
57.12	49.87	111.7	109.1	254.7	207.2
58.77	51.99	111.9	108.6	259.0	208.0
60.43	54.01	112.0	108.5	263.2	210.2
62.08	55.97	115.0	112.2	267.4	212.6
63.73	58.02	115.3	111.9	271.6	213.2
65.39	59.98	115.4	112.2	275.8	215.0
67.04	62.05	118.8	116.7	279.9	215.9
68.7	63.92	118.8	116.2	284.0	216.7
70.36	65.55	120.2	117.6	288.1	218.9
72.21	67.67	120.4	116.2	292.1	219.5
74.26	70.06	122.3	119.5	296.1	222.0
76.32	72.45	124.1	121	300.1	223.9
78.38	74.88	124.2	121.6	304.6	224.8
79.1	74.1	127.6	123.7	310.9	226.6
80.43	77.28	127.7	124.5	318.2	229.3
81.5	78.12	131.1	127.1	325.5	231.7
82.5	79.32	131.1	127.8	332.8	234.0
82.86	80.21	134.6	131.3	339.9	236.1
83.61	80.24	138.1	135.4		
84.56	81.15	138.5	133.3		
Дифферент	циальная сканир	ующая кало	риметрия		
317	229.4	817	277.9	1317	291.3
327	232.2	827	277.7	1327	291.9
337	234.8	837	277.2	1337	292.6
347	237.5	847	276.9	1347	293.8
357	239.4	857	277.8	1357	294.8
367	241.2	867	278.6	1367	295.3
377	243.2	877	278.6	1377	295.8
387	245.2	887	279.0	1387	295.7
397	246.6	897	279.7	1397	295.3
407	247.8	907	280.2	1407	294.1
417	249.3	917	279.3	1417	293.8
427	250.7	927	279.7	1427	293.3
437	251.7	937	279.6	1437	293.4
447	252.8	947	280.1	1447	293.6
457	254.0	957	281.4	1457	294.9
467	255.4	967	284.1	1467	296.8
477	256.3	977	285.4	1477	298.2
487	256.7	987	286.1	1487	298.4
497				1	
	257.6	997	286.4	1497	298.7
507	257.6 258.9	997 1007	286.4 286.8	1497 1507	298.7 299.7

527	260.9	1027	287.2	1527	298.6
537	261.5	1037	287.4	1537	298.1
547	261.9	1047	286.5	1547	298.3
557	262.5	1057	286.1	1557	299.0
567	263.3	1067	286.1	1567	300.5
577	264.1	1077	286.3	1577	301.7
587	264.9	1087	285.9	1587	300.9
597	265.9	1097	285.9	1597	301.1
607	266.7	1107	286.2	1607	301.6
617	267.3	1117	287.6	1617	300.6
627	267.7	1127	288.9	1627	300.6
637	268.1	1137	289.7	1637	300.6
647	269.1	1147	289.7	1647	300.1
657	270.0	1157	289.7	1657	300.8
667	270.4	1167	289.4	1667	302.0
677	271.0	1177	289.7	1677	305.0
687	271.6	1187	290.4	1687	305.3
697	271.7	1197	287.3	1697	305.2
707	271.6	1207	287.3	1707	304.2
717	271.7	1217	288.5	1717	304.0
727	271.8	1227	290.1	1727	305.6
737	272.5	1237	290.6	1737	304.7
747	273.4	1247	290.0	1747	304.3
757	274.3	1257	289.7	1757	305.0
767	275.3	1267	291.5	1767	306.4
777	275.6	1277	290.9	1777	306.6
787	276.4	1287	290.3	1787	307.0
797	277.5	1297	289.9	1797	306.8
807	277.8	1307	289.8		

Таблица S6.3. Параметры сглаживающих моделей теплоемкости гафната гадолиния.

2-40 K					
$Cp = \sum_{0}^{m} A$	$A_j U^j$.где U= ln(T/B). B=400				
0	-530.6				
1	-1408				
2	-1208				
3	-496.0				
4	-107.8				
5	-12.02				
6	-0.5429				
35-1800 K					
CpFit					

α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K
1.879	0.3075	0.1563	113.3	8.687	4.416
4.204	0.2465	0.1253	301.7	24.55	12.48
5.327	0.3407	0.1732	749.9	25.34	12.88
2.012	0.1987	0.1010	5718	390.7	198.6

Таблица S7.1. Экспериментальная теплоемкость гафната тербия (пирохлор)

	1						
Т	C _p	T	Cp	T	Cp		
Κ	Дж/(моль·К)	K	Дж/(моль·К)	K	Дж/(моль·К)		
Релаксационная калориметрия							
2.444	4.880	6.113	2.751	15.356	4.666		
2.679	4.641	6.706	2.581	16.827	5.641		
2.936	4.449	7.342	2.480	18.434	6.922		
3.218	4.196	8.047	2.427	20.208	8.497		
3.525	3.956	8.821	2.438	22.062	10.791		
3.864	3.746	9.670	2.507	24.233	12.100		
4.236	3.528	10.642	2.662	26.550	14.744		
4.641	3.287	11.665	2.935	29.117	17.750		
5.098	3.040	12.820	3.329	31.969	22.509		
5.572	2.877	14.015	3.904	34.987	26.564		
Адиаба	тическая калор	иметрия					
6.840	2.830	70.86	74.98	159.0	160.1		
7.460	2.950	72.83	77.36	162.5	162.8		
7.950	2.850	75.09	80.03	170.2	168.6		
8.330	2.580	77.31	82.6	174.2	171.5		
9.680	2.860	79.38	84.11	177.8	174		
10.66	3.440	79.52	85.12	181.3	176.5		
11.98	3.437	81.74	87.6	184.8	178.8		
13.04	4.223	81.88	88.1	188.4	181.2		
14.25	4.650	83.98	90.06	191.9	183.4		
15.43	5.420	84.21	88.89	195.5	185.7		
16.73	5.818	86.25	92.53	199.1	187.9		
18.01	6.452	86.41	92.4	203.1	190.2		
19.29	8.041	88.61	94.78	207.5	192.8		
20.75	9.602	88.64	95.07	212.0	195.3		
23.52	11.520	90.82	97.95	216.4	197.7		
25.69	14.000	93.05	99.68	220.8	199.9		
27.81	16.580	94.91	101.6	225.1	201.9		
29.79	19.100	95.36	102.4	229.5	204		
31.75	21.670	97.60	105.1	234.1	206.1		
33.72	24.370	97.65	104.4	238.5	208.2		
35.66	26.790	99.86	106.6	242.9	210.2		
37.53	29.620	100.1	106.8	247.2	212.2		
39.38	32.380	103.1	109.9	251.6	214		

41.21	35.060	106.7	113.4	255.9	215.7
43.04	37.450	107.2	113.9	260.2	217.4
44.86	39.850	110.3	117	264.4	219
46.66	42.570	111.2	117.8	268.7	220.5
48.46	45.240	113.9	120.4	272.9	222
50.26	47.51	114.7	121.2	277.0	223.4
52.05	50.02	117.5	123.9	281.2	224.7
53.95	52.58	118.2	124.5	285.3	226
56.26	55.82	121.7	127.8	289.4	227.3
58.31	58.68	129.2	134.8	293.5	228.5
60.14	61.18	133.2	138.4	297.5	229.7
61.99	63.67	136.8	141.5	301.4	230.8
63.75	65.99	144.5	148.2	305.8	232
65.54	68.31	148.5	151.6	312.3	234.4
67.31	70.57	152.0	154.5	319.8	236.4
69.09	72.8	155.5	157.3	327.1	239.1
Диффер	енциальная ска	нирующа	я калориметри	я	
317	236.1	817	278.9	1317	298.9
327	238.9	827	279.0	1327	298.7
337	240.9	837	279.7	1337	299.4
347	243.0	847	279.5	1347	299.0
357	244.4	857	280.3	1357	299.1
367	245.8	867	280.7	1367	300.1
377	247.4	877	281.3	1377	302.3
387	248.5	887	281.6	1387	302.6
397	249.9	897	282.4	1397	301.7
407	251.1	907	283.4	1407	301.3
417	252.5	917	282.4	1417	301.7
427	253.7	927	282.8	1427	303.4
437	254.7	937	282.8	1437	303.7
447	255.7	947	284.2	1447	303.9
457	256.9	957	284.3	1457	304.2
467	257.6	967	285.8	1467	306.0
477	258.6	977	286.3	1477	306.4
487	259.2	987	287.1	1487	306.6
497	260.0	997	287.9	1497	306.6
507	260.9	1007	288.3	1507	305.6
517	261.9	1017	289.4	1517	305.4
527	263.0	1027	289.1	1527	305.1
537	264.0	1037	288.6	1537	305.2
547	264.6	1047	289.4	1547	305.3
557	265.1	1057	289.5	1557	306.5
567	266.0	1067	289.6	1567	306.7
577	266.7	1077	290.5	1577	307.3
587	267.3	1087	289.1	1587	305.5
597	268.0	1097	289.5	1597	306.0

607	268.6	1107	290.1	1607	306.0
617	269.1	1117	291.5	1617	307.4
627	270.0	1127	292.8	1627	307.4
637	270.2	1137	293.5	1637	312.8
647	270.9	1147	293.2	1647	312.0
657	271.7	1157	293.2	1657	311.7
667	272.2	1167	292.9	1667	313.2
677	272.6	1177	292.6	1677	313.6
687	273.1	1187	292.8	1687	312.9
697	273.7	1197	292.9	1697	313.9
707	273.7	1207	293.9	1707	313.4
717	274.3	1217	294.4	1717	313.9
727	275.1	1227	294.7	1727	315.0
737	275.4	1237	296.7	1737	311.8
747	276.2	1247	296.7	1747	312.0
757	277.1	1257	298.4	1757	312.7
767	277.5	1267	298.3	1767	315.9
777	278.1	1277	297.8	1777	313.2
787	277.8	1287	297.1	1787	315.1
797	278.6	1297	297.2	1797	316.4
807	278.8	1307	297.9	1807	318.7

Таблица S7.2. Параметры сглаживающих моделей теплоемкости гафната тербия.

3-40 K									
$C_{\rm p}=\Sigma A_{\rm i} T$	$C_{p} = \Sigma A_{i} T^{i}$								
0	7.105								
1	-1.095								
2	0.05005								
3	0.0041361								
4	-0.0003459								
5	0.000009955								
6	-0.000000100)6							
20-1800	K								
CpFit									
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	$s(\theta) / K$				
4.447	0.1145	0.1145 0.05818 208.9 7.949 4.039							
2.671	0.1159	0.05889	5299	176.4	89.64				
6.122	0.1331 0.06761 645.6 10.0936 5.128								
0.7588	0.1281	0.06509	61.17	6.807	3.459				

Таблица S8.1. Экспериментальная теплоемкость твердого раствора Dy₂O₃·2HfO₂.

Τ	$C_{\rm p}$	Τ	C_{p}	Т	Cp		
K	Дж/(моль•К)	Κ	Дж/(моль•К)	K	Дж/(моль•К)		
Релаксационная калориметрия							
2.441	3.935	6.101	1.241	15.347	2.816		

2.675	3.575	6.701	1.132	16.819	3.647
2.932	3.202	7.342	1.064	18.422	4.705
3.214	2.859	8.074	1.021	20.177	6.089
3.522	2.563	8.857	1.040	22.125	7.799
3.859	2.252	9.730	1.099	24.201	9.449
4.230	1.987	10.664	1.234	26.501	12.01
4.635	1.744	11.674	1.438	29.023	15.59
5.100	1.530	12.789	1.757	31.937	18.98
5.564	1.377	14.017	2.206	35.012	23.40
Адиабати	ческая калориметр	ЯИ			
6.39	1.320	61.85	59.84	172.68	171.1
6.88	1.270	63.50	62.07	176.27	173.7
7.67	1.200	65.16	64.20	179.78	176.2
8.61	1.170	66.82	66.24	183.30	178.7
9.54	1.220	68.47	68.34	186.83	181.1
10.44	1.343	70.13	70.36	190.37	183.4
11.33	1.524	71.99	72.68	193.89	185.7
12.20	1.759	74.05	75.21	197.41	187.9
13.06	2.056	76.11	77.89	200.95	190.1
13.93	2.337	78.17	80.61	204.91	192.5
14.80	2.665	80.23	83.18	209.30	195.1
15.66	3.040	82.30	85.46	213.67	197.5
16.51	3.466	84.37	87.53	218.06	200.0
17.35	3.935	86.44	90.10	222.35	202.2
18.19	4.490	88.50	93.07	226.68	204.3
19.02	5.097	90.57	95.33	230.97	206.1
19.90	5.804	92.65	97.61	235.41	208.2
21.21	6.898	94.72	99.91	239.74	210.3
22.79	8.443	96.80	102.2	244.02	212.4
24.35	10.13	98.88	104.5	248.28	214.6
25.93	11.91	100.96	106.8	252.51	216.5
27.52	13.76	103.66	109.9	256.71	218.3
29.11	15.72	106.98	113.5	260.90	220.0
30.71	17.77	110.31	117.0	265.04	221.6
32.32	19.88	113.64	120.5	269.19	223.2
33.93	21.95	116.90	123.9	273.29	224.7
35.55	24.01	116.98	124.5	277.39	226.2
37.17	26.36	119.34	125.8	281.42	227.6
38.80	28.61	122.96	129.3	285.45	229.0
40.43	30.80	126.51	132.6	289.43	230.3
42.07	33.01	130.06	135.9	293.33	231.6
43.70	35.29	133.60	139.2	297.19	232.8
45.35	37.55	137.15	142.3	300.78	233.9
47.00	39.85	140.69	145.5	304.96	235.1
48.64	42.13	144.26	148.5	311.22	236.9

50.29	44.40	147.79	151.5	318.38	238.9
51.94	46.67	151.31	154.5	325.44	240.7
53.59	48.91	154.83	157.4	332.42	242.4
55.24	51.07	158.39	160.2	339.34	244.1
56.89	53.28	161.91	163.0	346.06	245.6
58.54	55.45	165.45	165.7		
60.19	57.63	168.99	168.4		
Дифферен	нциальная сканиру	ющая кало	риметрия	•	•
317	238.0	817	280.2	1317	298.5
327	241.1	827	280.5	1327	299.0
337	243.7	837	282.0	1337	299.2
347	246.0	847	281.3	1347	297.7
357	248.0	857	282.4	1357	297.2
367	249.7	867	283.2	1367	297.8
377	251.2	877	283.9	1377	300.1
387	252.2	887	283.3	1387	300.8
397	253.5	897	283.8	1397	299.7
407	254.4	907	284.6	1407	297.4
417	255.7	917	283.2	1417	298.5
427	257.2	927	283.9	1427	299.9
437	258.0	937	284.5	1437	298.4
447	258.8	947	285.1	1447	299.1
457	259.9	957	285.6	1457	299.7
467	260.7	967	286.6	1467	301.3
477	261.5	977	287.8	1477	303.1
487	262.4	987	288.2	1487	301.8
497	263.0	997	288.2	1497	303.3
507	263.7	1007	288.3	1507	303.3
517	264.5	1017	288.0	1517	305.4
527	265.2	1027	288.0	1527	305.0
537	265.9	1037	287.7	1537	304.9
547	266.5	1047	288.1	1547	303.8
557	267.0	1057	287.9	1557	305.1
567	267.5	1067	288.0	1567	304.2
577	268.4	1077	289.1	1577	304.1
587	269.7	1087	287.9	1587	303.1
597	270.5	1097	288.6	1597	303.5
607	270.8	1107	288.8	1607	303.2
617	271.6	1117	289.9	1617	302.9
627	272.5	1127	292.7	1627	305.1
637	273.3	1137	293.1	1637	307.2
647	274.1	1147	293.2	1647	307.2
657	274.9	1157	292.8	1657	305.1
667	275.0	1167	292.2	1667	308.8
677	275.7	1177	292.7	1677	309.3

687	276.6	1187	293.4	1687	308.7
697	277.3	1197	294.5	1697	307.8
707	277.3	1207	295.1	1707	306.8
717	277.2	1217	294.0	1717	307.4
727	277.0	1227	293.4	1727	310.3
737	276.6	1237	294.6	1737	306.1
747	276.6	1247	293.5	1747	306.4
757	277.5	1257	295.3	1757	306.5
767	277.5	1267	294.9	1767	311.4
777	277.8	1277	295.3	1777	311.9
787	277.9	1287	294.1	1787	311.6
797	278.9	1297	295.2	1797	310.4
807	279.3	1307	295.9	1807	309.2

Таблица S8.2. Параметры сглаживающих моделей теплоемкости Dy₂O₃·2HfO₂.

1-35 K							
$C_{\rm p} = \Sigma A_{\rm i} T^{\rm i}$							
0	8.254						
1	-2.677						
2	0.3793	0.3793					
3	-0.02727						
4	0.001111						
5	-0.00002231	-0.00002231					
6	0.000001728						
20-1800 K							
CpFit							
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	$s(\theta) / K$		
4.253	0.1818	0.09236	256.6	15.3387	7.794		
5.719	0.2268	0.1152	666.6	14.0674	7.148		
2.144	0.1178	0.05985	5569	217.7	110.6		
1.501	0.2552	0.1297	101.6	7.585	3.854		

Т	Cp	T	Cp	T	Cp	
K	Дж/(моль·К)	K	Дж/(моль•К)	K	Дж/(моль•К)	
Релаксационная калориметрия						
2.383	5.147	6.020	3.118	15.25	4.742	
2.621	4.853	6.614	2.991	16.72	5.567	
2.874	4.657	7.252	2.916	18.33	6.656	
3.153	4.483	7.954	2.885	20.09	8.055	
3.458	4.236	8.727	2.907	22.04	9.763	
3.794	4.037	9.592	2.940	24.13	11.44	
4.163	3.800	10.56	3.102	26.45	13.99	
4.565	3.588	11.56	3.308	28.99	17.24	
5.007	3.406	12.69	3.637	31.91	21.17	
5.489	3.255	13.90	4.132	35.00	25.56	
Адиабатиче	еская калориметр	ия.				
5.63	3.41	67.18	67.39	155.8	157.9	
5.91	3.39	68.84	69.41	159.4	160.8	
6.34	3.27	70.50	71.35	163.0	163.6	
6.95	3.20	72.36	73.63	166.6	166.4	
7.72	3.16	74.42	76.11	172.2	170.6	
8.65	3.12	76.49	78.73	176.4	173.6	
9.57	3.18	78.55	81.38	180.0	176.2	
10.55	3.301	80.62	83.86	183.6	178.6	
11.44	3.471	82.69	86.05	187.1	181.0	
12.32	3.723	84.77	88.02	190.7	183.3	
13.19	4.001	86.84	90.69	194.4	185.7	
14.07	4.281	88.91	93.45	197.9	187.9	
14.94	4.620	90.99	95.64	201.5	190.1	
15.80	5.027	93.07	97.86	205.5	192.4	
16.65	5.471	95.15	100.1	210.0	195.0	
17.50	5 972	97.23	102.3	201.0	189.7	
18.35	6 566	99.31	102.5	201.0	192.1	
19.19	7 186	102.0	107.6	209.0	192.1	
20.04	7.860	102.0	111.2	213.9	197.1	
21.37	8.955	103.4	111.2	213.5	197.1	
21.37	10.49	112.0	118.2	210.5	201.8	
22.57	10.47	112.0	121.6	222.7	201.0	
24.37	12.13	115.4	121.0	227.1	204.0	
20.17	15.89	110.4	122.4	231.7	200.1	
27.77	13.74	120.0	123.9	230.1	208.1	
29.37	17.69	123.5	129.3	240.6	210.2	
30.98	19.78	12/.1	132./	244.9	212.2	
32.59	21.92	130.7	136.0	249.3	214.1	
34.22	23.95	134.2	139.3	253.6	215.9	
35.84	26.13	137.7	142.5	257.9	217.6	
37.47	28.50	141.3	145.6	262.2	219.2	
39.10	30.74	144.9	148.7	266.4	220.8	

Таблица S9.1. Экспериментальная теплоемкость твердого раствора Ho₂O₃·2HfO₂. *P*=101.3 кПа.

40.73	32.93	148.6	151.9	270.7	222.3
42.37	35.13	152.2	154.9	274.9	223.8
44.01	37.31	155.8	157.9	279.0	225.2
45.65	39.54	159.4	160.8	283.1	226.5
47.31	41.80	163.0	163.6	287.2	227.8
48.95	44.02	116.4	122.4	291.2	229.1
50.60	46.22	120.0	125.9	295.2	230.3
52.26	48.42	123.5	129.3	303.5	232.6
53.91	50.58	127.1	132.7	309.8	234.4
55.57	52.64	130.7	136.0	317.1	236.3
57.22	54.77	134.2	139.3	324.4	238.0
58.88	56.89	137.7	142.5	331.6	239.7
60.54	58.97	141.3	145.6	338.6	241.3
62.19	61.14	144.9	148.7	345.7	242.8
63.85	63.30	148.6	151.9		
65.51	65.40	152.2	154.9		
Дифферени	циальная сканиру	ющая калор	иметрия	1	I
317	236.1	817	275.8	1317	288.7
327	238.7	827	276.2	1327	289.1
337	241.3	837	277.2	1337	289.6
347	243.3	847	277.8	1347	290.9
357	245.0	857	278.7	1357	291.7
367	246.3	867	278.4	1367	294.0
377	247.9	877	278.6	1377	294.3
387	249.1	887	273.0	1387	293.8
397	250.5	897	279.3	1397	292.9
407	251.6	907	279.3	1407	292.6
417	252.8	917	279.5	1417	292.6
427	254.0	927	279.4	1427	292.7
437	255.0	937	279.8	1437	292.3
447	255.9	947	280.5	1447	291.4
457	256.7	957	280.8	1457	291.3
467	257.6	967	280.1	1467	293.0
477	258.4	977	280.4	1477	293.2
487	259.2	987	280.9	1487	292.7
497	260.1	997	281.4	1497	293.9
507	260.7	1007	282.1	1507	294.3
517	261.2	1017	282.5	1517	295.8
527	262.0	1027	281.8	1527	296.9
537	262.9	1037	282.3	1537	298.1
547	263.4	1047	281.9	1547	298.4
557	264.0	1057	282.1	1557	298.5
567	264.7	1067	282.1	1567	299.1
577	265.2	1077	282.9	1577	297.6
587	265.5	1087	282.9	1587	296.1
597	266.2	1097	284.2	1597	296.8
607	267.2	1107	283.8	1607	297.9
-----	-------	------	-------	------	-------
617	267.6	1117	285.2	1617	298.0
627	268.3	1127	286.3	1627	297.8
637	268.6	1137	287.4	1637	297.9
647	269.3	1147	286.4	1647	297.2
657	270.2	1157	285.5	1657	297.6
667	270.6	1167	285.8	1667	298.1
677	271.3	1177	286.5	1677	297.8
687	272.1	1187	286.6	1687	297.5
697	272.3	1197	286.6	1697	298.1
707	271.6	1207	287.8	1707	298.3
717	271.1	1217	288.0	1717	300.1
727	271.5	1227	288.3	1727	299.6
737	271.9	1237	287.9	1737	299.2
747	272.4	1247	288.6	1747	303.0
757	272.9	1257	290.0	1757	303.0
767	273.0	1267	291.3	1767	303.0
777	273.3	1277	290.4	1777	301.0
787	273.9	1287	289.1	1787	302.0
797	274.8	1297	289.4	1797	301.4
807	275.0	1307	288.4	1807	301.2

Таблица S9.2. Параметры сглаживающих моделей.

2-35 K									
$C_{\rm p}=\Sigma A_i T$	$C_{p} = \Sigma A_{i} T^{i}$								
0	7.447								
1	-1.290								
2	0.1231								
3	-0.004940								
4	0.0001301								
5	-0.00000135	7							
15-1800	Κ								
CpFit									
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K				
0.1952	0.01854	0.009421	5.423	2.875	1.461				
4.180	0.08211	0.04173	171.9	3.020	1.535				
1.750	0.09917	0.05040	5135	224.9	114.3				
6.834	0.07850	0.03990	585.1	6.015	3.057				

Таблица S10.1. Экспериментальная теплоемкость твердого раствора Er₂O₃·2HfO₂. *P*=101.3 кПа.

Т	$C_{\rm p}$	Т	Cp	Т	$C_{\rm p}$	
Κ	Дж/(моль·К)	Κ	Дж/(моль·К)	Κ	Дж/(моль·К)	

Релаксацио	онная калориме	стрия			
2.39372	2.70298	6.02365	1.41692	15.2567	7.43931
2.62408	2.44503	6.61815	1.52792	16.7214	8.90336
2.87893	2.19645	7.256	1.71859	18.3256	10.69538
3.15585	1.97217	7.98197	1.99053	20.0947	12.75472
3.46139	1.78874	8.77084	2.35962	22.0566	15.15342
3.79551	1.63228	9.62804	2.82669	24.2108	18.13094
4.16278	1.47779	10.5613	3.42734	26.5417	20.63114
4.58173	1.39258	11.5716	4.13493	29.027	23.42768
5.00769	1.35635	12.6972	5.02326	31.9003	28.26499
5.49132	1.37031	13.9181	6.07493	34.9732	31.92043
Адиабатич	еская калориме	етрия	1	I	L
4.72	1.49	55.08	55.69	134.52	132.4
4.82	1.46	55.34	55.56	138.16	135.5
4.94	1.50	56.84	57.51	141.74	138.5
5.14	1.51	57.00	57.30	145.32	141.4
5.42	1.5	58.61	59.34	148.89	144.2
5.7	1.54	58.65	59.06	152.45	147.1
5.98	1.58	60.31	60.89	156.03	149.8
6.38	1.65	60.37	61.17	159.6	152.6
6.96	1.83	61.97	62.70	163.19	155.3
7.68	2.10	62.14	63.00	166.78	157.9
8.52	2.46	63.64	64.45	170.39	160.5
9.37	2.90	63.90	64.84	174.16	163.2
10.21	3.422	65.30	66.23	177.77	165.7
11.04	3.986	65.66	66.66	181.38	168.2
11.9	4.644	66.96	67.89	185.00	170.6
12.75	5.379	67.41	68.48	188.63	173.0
13.65	6.105	68.62	69.63	192.25	175.3
14.5	6.819	69.16	70.30	195.88	177.6
15.34	7.599	70.29	71.26	199.50	179.8
16.19	8.403	70.91	72.12	203.56	182.3
17.03	9.316	72.15	73.19	208.08	184.9
17.87	10.23	72.86	74.15	212.59	187.5
18.71	11.21	74.21	75.22	217.08	189.9
19.55	12.27	75.05	76.4	221.53	192.1
20.87	13.78	76.28	77.54	225.99	194.3
22.47	15.81	77.33	78.76	230.41	196.5
24.09	17.88	78.35	79.83	234.89	198.8
25.71	19.96	79.28	80.75	239.59	201.1
27.33	22.08	79.54	81.02	244.04	203.2
28.95	24.18	80.42	82.03	248.42	205.3
30.58	26.36	81.71	83.23	252.78	207.2
32.22	28.55	81.75	83.27	257.10	209.1
33.86	30.66	83.94	85.49	261.38	210.8
35.5	32.57	83.98	85.53	265.65	212.5
	i i			-	

37.14	34.89	86.18	87.74	269.88	214.2
38.78	36.98	86.22	87.79	274.07	215.7
40.43	38.90	88.42	89.99	278.23	217.3
42.08	40.82	88.46	90.02	282.35	218.7
43.73	42.72	90.69	92.23	286.44	220.1
45.38	44.60	92.96	94.47	290.45	221.5
46.35	46.66	95.23	96.69	294.43	222.8
47.05	46.54	97.53	98.92	298.38	224.1
48.11	48.50	99.84	101.1	302.26	225.3
48.7	48.45	102.94	104.1	306.56	226.6
49.65	50.09	106.54	107.5	312.79	228.4
50.36	50.32	116.26	116.4	320.08	230.4
51.51	52.01	120.21	120.0	327.18	232.3
52.02	52.11	123.82	123.2	334.19	234.1
53.31	53.87	127.38	126.3	342.37	236.7
53.68	53.84	130.98	129.4	349.72	239.1
Дифференциа	альная сканиру	ющая калорим	етрия		1
317	229.6	817	273.8	1317	288.6
327	232.6	827	274.1	1327	288.7
337	235.9	837	274.0	1337	289.4
347	238.4	847	274.3	1347	288.8
357	240.3	857	275.7	1357	288.5
367	242.1	867	276.4	1367	288.2
377	243.8	877	276.8	1377	289.0
387	245.0	887	277.1	1387	289.3
397	246.3	897	277.3	1397	288.5
407	247.7	907	277.3	1407	289.2
417	249.4	917	276.5	1417	288.0
427	250.6	927	275.9	1427	290.0
437	251.4	937	276.1	1437	289.4
447	252.3	947	277.0	1447	289.7
457	253.3	957	276.7	1457	290.0
467	254.4	967	277.3	1467	292.1
477	255.2	977	278.5	1477	293.9
487	255.8	987	278.7	1487	294.0
497	256.6	997	279.8	1497	294.6
507	257.5	1007	280.3	1507	294.5
517	258.2	1017	279.8	1517	295.1
527	258.9	1027	281.0	1527	292.7
537	259.7	1037	280.8	1537	292.3
547	260.4	1047	280.5	1547	291.7
557	260.9	1057	280.6	1557	292.1
567	261.7	1067	280.6	1567	292.4
577	262.3	1077	281.1	1577	293.9
587	262.6	1087	280.7	1587	292.5
597	263.3	1097	281.5	1597	292.4

607	263.7	1107	280.9	1607	292.7
617	264.8	1117	284.3	1617	294.0
627	265.5	1127	285.0	1627	294.8
637	266.2	1137	285.7	1637	297.0
647	267.2	1147	285.1	1647	297.9
657	268.1	1157	285.2	1657	296.5
667	268.6	1167	284.9	1667	297.0
677	269.5	1177	283.4	1677	297.1
687	270.3	1187	282.2	1687	296.4
697	270.9	1197	281.5	1697	295.8
707	270.7	1207	282.7	1707	295.6
717	269.8	1217	284.5	1717	296.7
727	269.1	1227	284.3	1727	296.8
737	269.4	1237	284.5	1737	295.9
747	269.4	1247	285.7	1747	295.5
757	270.1	1257	287.5	1757	295.7
767	271.0	1267	287.7	1767	300.0
777	271.3	1277	286.1	1777	300.1
787	271.5	1287	286.3	1787	300.7
797	272.2	1297	286.6	1797	299.7
807	272.7	1307	287.4	1807	298.6

Таблица S10.2. Параметры сглаживающих моделей теплоемкости Er₂O₃·2HfO₂.

2-35 K					
$C_{p}=\Sigma A_{i}T$	i				
0	6.672				
1	-2.565				
2	0.4381				
3	-0.03389				
4	0.001568				
5	-0.00003768				
6	0.0000003599)			
20-1800	K				
CpFit					
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	$s(\theta) / K$
1.794	0.1245	0.06327	5921	260.7	132.5
5.928	0.1813	0.09216	688.5	11.49	5.839
1.861	0.1365	0.06937	90.49	4.493	2.284
0.09520	0.02274	0.01156	6.194	5.117	2.601
3.385	0.1318	0.06699	268.4	13.90	7.066

Таблица S11.1. Экспериментальная теплоемкость т	твердого раствора Tm ₂ O ₃ ·2HfO ₂ . <i>P</i> =10	01.3 кПа
---	--	----------

K	Дж/(моль·К)	K	Дж/(моль·К)	K	Дж/(моль·К)
Релаксационная калориметрия					
2.3932	0.76326	6.03135	2.41393	15.2485	5.94887
2.62419	0.8603	6.62573	2.65925	16.7264	6.72364
2.88066	0.96798	7.26191	2.9086	18.338	7.70329
3.15667	1.09156	7.9654	3.16205	20.1034	8.9374
3.4641	1.25341	8.73898	3.44199	22.0715	10.67291
3.79902	1.40659	9.58427	3.72641	24.2185	12.81297
4.16826	1.59408	10.515	4.05684	26.4653	14.09889
4.57195	1.77842	11.5866	4.38874	29.0052	17.52419
5.03269	1.96858	12.7048	4.80203	31.8558	21.47421
5.49863	2.1926	13.9285	5.31416	35.001	24.96746
Адиабатич	еская калоримет	рия			
4.62	1.84	55.22	52.17	155.2	157
4.7	1.9	56.87	54.29	155.6	157.3
4.81	1.94	58.53	56.4	159.1	160.1
4.93	1.98	60.19	58.56	166.1	165.6
5.11	2.11	61.85	60.68	169.7	168.3
5.37	2.24	63.51	62.79	173.17	170.9
5.64	2.38	65.18	64.87	176.67	173.4
5.91	2.5	66.84	66.93	180.17	175.8
6.3	2.66	68.5	68.91	183.7	178.2
6.84	2.92	70.17	70.89	187.2	180.6
7.54	3.22	72.03	73.07	190.7	182.9
8.38	3.54	74.09	75.55	194.2	185.1
9.24	3.85	76.15	78.11	197.7	187.3
10.11	4.152	78.22	80.7	201.2	189.4
10.98	4.468	80.29	83.17	205.1	191.7
11.84	4.783	80.9	83.6	209.5	194.2
12.76	5.175	81.66	84.46	213.8	196.6
13.63	5.466	82.36	85.39	218.2	198.9
14.49	5.82	83.51	86.54	222.4	201
15.35	6.185	83.88	86.95	226.7	203.1
16.21	6.596	84.44	87.41	231.1	205.2
17.06	7.05	85.76	89.04	235.4	207.3
17.91	7.533	86.12	89.44	239.7	209.3
18.75	8.082	86.52	89.84	244	211.4
19.6	8.688	88.02	91.53	248.2	213.4
20.93	9.666	88.34	91.88	252.4	215.3
22.54	11.03	90.28	94	256.6	217
24.16	12.55	92.57	96.49	260.7	218.7
25.77	14.13	94.87	98.97	264.8	220.3
27.38	15.83	97.17	101.4	268.8	221.9
29	17.65	99.47	103.9	272.9	223.5
30.61	19.59	102.4	107	276.9	225
32.23	21.6	105.9	110.7	280.8	226.4

33.86	23.62	109.4	114 3	284 7	227.8
35.49	25.59	112.9	117.9	288.6	229.2
37.11	27.9	116.4	121.4	293	230.5
38.74	30.11	119.9	124.9	296	231.7
40.38	32.26	123.4	1283	2997	232.9
42.02	34 41	127.1	131.9	303.7	232.9
43.66	36.61	130.6	135.2	309.9	236.1
45.3	38.88	134.1	138.5	316.9	238.3
46.95	41 16	137.6	141 7	323.9	240.3
48.6	43.46	141 1	144 9	330.6	242.2
50.26	45.65	144.6	148	337.3	244
51.91	47.84	148.2	151.1	343.8	245 7
53.56	50.03	151 7	154.1	350.2	243.7
Лифференц			пиметрия	550.2	247.4
315	237.6	ующая кало 815	283 4	1315	295.2
325	240.7	825	283.7	1325	295.6
325	240.7	835	285.7	1325	295.8
315	245.8	845	284.6	1345	295.0
343	240.0	855	284.0	1345	290.1
355	249.0	855	284.4	1355	290.1
303	250.9	003	203.3	1275	290.3
3/3	252.5	8/3	283.3	13/3	296.7
385	253.5	885	285.1	1385	296.9
395	254.6	895	284.9	1395	297.1
405	256.5	905	285.1	1405	296.7
415	257.8	915	285.5	1415	296.1
425	258.9	925	285.8	1425	296.4
435	260.0	935	285.8	1435	296.4
445	261.8	945	286.1	1445	297.1
455	262.8	955	286.2	1455	297.0
465	264.1	965	286.8	1465	298.0
475	265.4	975	286.8	1475	298.0
485	266.2	985	287.1	1485	297.8
495	267.1	995	287.0	1495	298.8
505	268.2	1005	287.8	1505	299.0
515	269.2	1015	288.3	1515	299.0
525	269.7	1025	287.9	1525	298.8
535	270.8	1035	287.6	1535	298.3
545	271.6	1045	288.0	1545	298.2
555	272.2	1055	288.1	1555	298.2
565	272.5	1065	288.2	1565	298.4
575	272.9	1075	287.9	1575	299.4
585	274.0	1085	289.0	1585	299.1
595	274.1	1095	289.4	1595	299.2
605	274.6	1105	290.2	1605	300.8
615	275.0	1115	290.4	1615	300.3
625	276.0	1125	290.6	1625	300.5

635	276.3	1135	291.2	1635	300.4
645	277.4	1145	291.1	1645	300.6
655	278.2	1155	290.7	1655	302.2
665	278.9	1165	290.8	1665	301.8
675	279.4	1175	291.1	1675	302.1
685	279.4	1185	290.6	1685	302.1
695	279.6	1195	290.7	1695	302.3
705	279.8	1205	292.4	1705	301.6
715	280.0	1215	292.0	1715	301.2
725	280.1	1225	292.8	1725	301.6
735	280.4	1235	293.0	1735	302.0
745	281.0	1245	292.0	1745	302.0
755	281.9	1255	292.3	1755	302.7
765	282.0	1265	292.6	1765	303.6
775	282.5	1275	293.7	1775	304.0
785	282.3	1285	293.7	1785	304.0
795	283.4	1295	294.1	1795	304.0
805	283.8	1305	295.0	1805	303.9

Таблица S11.2. Параметры сглаживающих моделей теплоемкости Tm₂O₃·2HfO₂.

0-35 K					
$Cp = \Sigma A_i$	ſ				
1	0.2286				
2	0.06907				
3	-0.009308				
4	0.0005281				
5	-0.00001259				
6	0.0000001090				
20-1800	K				
CpFit					
α	$\Delta(\alpha)$	$s(\alpha)$	θ/Κ	$\Delta(\theta) / K$	s(θ) / K
0.2490	0.01767	0.008979	20.31	1.606	0.8163
4.000	0.1342	0.06821	338.8	15.55	7.905
2.516	0.1787	0.09081	140.7	4.947	2.514
4.969	0.2081	0.1058	748.5	12.412	6.308
1.713	0.1377	0.07000	7119	264.1	134.2

Таблица S12.1. Экспериментальная теплоемкость твердого раствора Yb₂O₃·2HfO₂. *P*=101.3 кПа.

Τ	C _p	T	$C_{\rm p}$	Т	$C_{\rm p}$		
K	Дж/(моль•К)	Κ	Дж/(моль•К)	Κ	Дж/(моль•К)		
Релаксационная калориметрия							
2.36497	2.98971	6.0323	1.00547	15.4414	2.02698		
2.65921	2.70145	6.78549	0.86404	17.3503	2.93065		
2.98989	2.42579	7.65455	0.76008	19.4941	4.21921		

3.36189	2.16283	8.61865	0.72117	21.9397	6.10249
3.77907	1.88983	9.70585	0.7384	24.619	8.80333
4.24697	1.62494	10.9076	0.84415	27.6842	11.95636
4.77742	1.37797	12.2519	1.05785	31.1317	15.78643
5.36506	1.1749	13.7637	1.43019	34.9953	19.76246
Адиабати	ческая калориме	грия			
4.97	1.37	64.97	56.2	142.72	135.3
5.16	1.35	66.63	58.15	145.8	138.3
5.45	1.26	68.29	60.08	146.1	138.3
5.75	1.17	69.95	61.91	149.72	141.5
6.04	1.100	71.81	63.89	149.86	141.8
6.46	1.020	73.87	66.15	153.37	144.8
7.13	0.955	75.93	68.5	156.89	147.8
8.01	0.870	77.99	70.96	160.4	150.7
8.98	0.808	79.25	72.40	168.25	157.1
9.93	0.815	80.06	73.34	172.33	160.3
10.85	0.867	81.84	75.35	175.88	163.1
11.75	0.980	82.12	75.44	179.50	165.9
12.66	1.161	84.05	77.83	183.10	168.6
13.67	1.369	84.19	77.32	186.66	171.2
14.55	1.601	86.27	79.61	190.23	173.8
15.43	1.886	86.27	80.30	193.79	176.4
16.3	2.227	88.34	82.45	197.36	178.9
17.15	2.621	88.49	82.75	200.94	181.4
18	3.110	90.41	84.35	204.94	184.1
18.86	3.599	90.73	85.19	209.4	187.1
19.72	4.126	92.48	86.45	213.9	190
21.07	5.091	92.98	87.6	218.34	192.8
22.64	6.341	94.56	88.55	222.72	195.3
24.22	7.758	95.24	90.01	227.19	197.8
25.8	9.24	96.64	90.6	231.79	200.5
27.38	10.81	97.5	92.4	236.25	203
28.98	12.5	98.72	92.65	240.78	205.6
30.57	14.34	99.77	94.75	245.2	208.1
32.17	16.22	100.8	94.88	249.62	210.6
33.78	18.12	102.68	97.74	253.98	212.9

35.39	19.9	103.5	97.72	258.35	215
37.01	22	106.84	101	262.72	217.2
38.63	24.06	110.17	104.2	267.03	219.2
40.25	26.06	110.43	105.5	271.34	221.2
41.88	28.01	113 51	107.5	275.61	223.1
43.51	29.99	114 57	109.6	279.85	223.1
45.15	32.05	116.85	110.7	284.07	2267
46.8	34.14	118.07	113	288.26	228.5
40.0	36.2	110.07	113	200.20	220.3
50.08	38.26	121.50	114	292.41	230.2
51.72	<u> </u>	121.39	116.7	290.52	231.0
52.29	40.29	122.74	110.7	205.16	235.5
55.02	42.27	125.1	119.0	303.16	233
55.03	44.24	125.56	119.4	311.64	237.4
56.68	46.23	128.6	122.9	319.16	240
58.34	48.22	129.52	123.1	326.66	242.4
59.99	50.23	133.06	126.5	334.01	244.8
61.65	52.32	136.77	129.9	341.29	246.9
63.31	54.34	139.88	132.7		
Дифферен	щиальная сканир	ующая кало	риметрия	I	
317.0	239.8	817	281.8	1317	294.9
327.0	243.0	827	282.4	1327	293.7
337.0	245.3	837	282.6	1337	294.0
347.0	247.8	847	282.3	1347	293.7
357.0	249.7	857	283.2	1357	294.1
367.0	251.3	867	283.3	1367	294.8
377.0	252.9	877	283.2	1377	297.2
387.0	254.5	887	283.7	1387	296.2
397.0	255.9	897	284.5	1397	295.1
407.0	257.0	907	284.5	1407	293.9
417.0	258.5	917	283.5	1417	294.3
427.0	259.6	927	283.6	1427	295.9
437.0	260.5	937	283.9	1437	295.1
447.0	261.2	947	284.3	1447	296.4
457.0	262.3	957	284.4	1457	298.0
467.0	263.4	967	286.0	1467	299.0
477.0	264.3	977	286.0	1477	298.5
487.0	265.1	987	286.0	1487	298.8
497.0	266.1	997	286.3	1497	298.4
507.0	267.0	1007	286.9	1507	297.5
517.0	267.7	1017	287.1	1517	298.4
527.0	268.6	1027	286.3	1527	298.9
537.0	200.0	1027	285.9	1527	296.1
547.0	269.2	1037	205.5	1547	290.1
557.0	207.0	104/	200.0	1557	270.3
507.0	270.4	1057	287.8	133/	290.3
567.0	2/1.2	106/	288.2	130/	296.3

577.0	271.5	1077	288.3	1577	297.8
587.0	271.8	1087	287.8	1587	297.6
597.0	272.3	1097	287.7	1597	296.5
607.0	272.8	1107	287.1	1607	297.2
617.0	273.2	1117	289.2	1617	299.3
627.0	273.8	1127	290.5	1627	298.4
637.0	274.3	1137	291.6	1637	299.1
647.0	274.8	1147	291.0	1647	302.3
657.0	275.6	1157	290.8	1657	301.7
667.0	275.8	1167	290.4	1667	302.2
677.0	276.0	1177	290.7	1677	302.9
687.0	277.0	1187	290.3	1687	301.8
697.0	277.8	1197	289.7	1697	301.0
707.0	277.7	1207	289.3	1707	299.9
717.0	277.4	1217	290.4	1717	298.9
727.0	277.5	1227	292.6	1727	301.3
737.0	277.8	1237	293.4	1737	299.1
747.0	278.7	1247	293.2	1747	299.9
757.0	279.7	1257	294.2	1757	301.4
767.0	279.8	1267	294.3	1767	303.5
777.0	280.0	1277	294.5	1777	301.2
787.0	280.5	1287	294.7	1787	304.0
797.0	281.1	1297	294.0	1797	304.4
807.0	281.1	1307	293.5	1807	303.0

Таблица S12.2. Параметры сглаживающих моделей теплоемкости Yb₂O₃·2HfO₂.

2-35 K	2-35 K						
$C_{\rm p}=\Sigma A_{\rm i} T$	1						
0	5.956						
1	-1.748						
2	0.2361						
3	-0.017455						
4	0.0007679						
5	-0.00001656						
6	0.000001369	9					
20-1800	K						
CpFit							
α	$\Delta(\alpha)$	$s(\alpha)$	θ / Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K		
7.048	0.1914	0.09729	654.5	10.40	5.283		
1.646	0.3118	0.1585	6911	613.7	311.9		
0.9630	0.3679	0.1870	95.74	15.29	7.773		
3.665	0.2586	0.1314	227.2	18.14	9.217		

Таблица S13.1. Экспериментальная теплоемкость твердого раствора Lu₂O₃·2HfO₂, P=101.3 кПа. T C_p T C_p T C_p

K	Дж/(моль· К)	К Дж/(моль·К)		K	Дж/(моль·К)
Релаксацион	ная калориме	грия			
2.160	0.0246	6.106	0.0725	17.604	2.826
2.390	0.0253	6.800	0.0988	19.533	4.094
2.648	0.0259	7.597	0.1374	21.706	5.762
2.935	0.0277	8.452	0.1958	24.036	7.794
3.256	0.0291	9.391	0.2743	26.732	10.378
3.615	0.0320	10.466	0.4279	29.768	13.386
4.015	0.0345	11.572	0.6194	33.105	17.262
4.463	0.0419	12.879	0.9225	36.804	21.686
4.957	0.0500	14.257	1.3860	40.899	26.838
5.501	0.0603	15.849	1.9910		
Адиабатичес	кая калориме	грия			
4.66	0.0433	72.24	63.67	191.2	166.3
4.87	0.0614	74.3	65.92	193.7	167.8
5.12	0.069	76.36	68.18	194.9	168.6
5.43	0.077	78.43	70.53	197.2	170.1
5.73	0.0952	79.73	72.4	198.8	171.1
6.03	0.11	80.49	72.79	200.8	172.3
6.42	0.135	82.56	74.77	202.9	173.6
7.09	0.188	82.56	75.29	204.7	174.7
7.99	0.232	84.63	76.63	206.7	175.8
8.94	0.29	85.02	77.78	209.2	177.2
9.87	0.385	86.71	79.04	211.2	178.4
10.76	0.5	87.47	80.23	213.6	179.8
11.63	0.659	88.78	81.41	215.7	180.9
12.5	0.867	89.91	82.66	218	182.2
13.37	1.078	90.85	83.24	220.1	183.4
14.23	1.344	92.44	85.15	222.3	184.5
15.19	1.665	92.93	85.35	224.5	185.5
16.04	2.002	94.91	87.56	226.7	186.7
16.88	2.407	95.01	87.42	228.9	187.8
17.72	2.843	97.09	89.45	231.1	188.9
18.57	3.324	97.38	89.95	233.3	190
19.41	3.846	99.17	91.42	235.4	191.1
20.24	4.419	99.85	92.34	237.7	192.3
21.56	5.424	101.9	94.04	239.9	193.4
23.11	6.709	103	95.32	242.2	194.4
24.67	8.112	105.2	97.26	244.3	195.6
26.24	9.625	106.7	98.83	246.5	196.6
27.82	11.21	108.5	100.5	248.7	197.6
29.4	12.92	110.4	102.3	250.8	198.6
30.99	14.79	111.9	103.6	253	199.6
32.59	16.66	114.1	105.7	255	200.4
34.19	18.48	115.2	106.6	257.3	201.4

35.8	20.40	117.78	109.1	259.3	202.3
37.42	22.49	121.47	112.4	261.6	203.2
39.04	24.48	125.23	115.8	263.4	204.0
40.66	26.45	129.20	119.2	265.8	205.0
42.30	28.41	133.02	122.6	270.0	206.7
43.93	30.41	139.91	128.4	274.1	208.3
45.57	32.43	144.00	131.8	278.2	209.9
47.22	34.50	147.65	134.7	282.3	211.4
48.86	36.57	151.25	137.6	286.4	212.9
50.51	38.58	154.85	140.4	290.4	214.3
52.16	40.60	158.46	143.2	292.9	215.2
53.81	42.54	162.06	146.0	297.1	216.6
55.46	44.51	165.78	148.7	300.9	217.9
57.11	46.45	169.39	151.4	305.2	219.2
58.77	48.47	173.03	154.0	311.4	221.2
60.43	50.42	176.64	156.5	318.6	223.4
62.08	52.34	180.27	159.0	325.7	225.4
63.74	54.36	182.56	160.6	332.7	227.3
65.40	56.16	183.93	161.5	339.7	229.2
67.06	57.89	186.52	163.2	346.6	230.9
68.72	59.73	187.56	163.9		
70.38	61.61	190.11	165.6		
Дифференци	альная сканир	ующая калор	иметрия		
317.0	222.8	817.0	271.9	1317.0	286.5
327.0	225.7	827.0	271.2	1327.0	287.5
337.0	229.1	837.0	271.8	1337.0	287.1
347.0	231.4	847.0	272.1	1347.0	285.6
357.0	233.9	857.0	272.9	1357.0	286.3
367.0	236.0	867.0	272.8	1367.0	286.6
377.0	237.9	877.0	272.7	1377.0	285.7
387.0	239.7	887.0	273.6	1387.0	289.9
397.0	241.5	897.0	273.3	1397.0	291.0
407.0	242.8	907.0	275.5	1407.0	291.6
417.0	244.2	917.0	276.0	1417.0	291.0
427.0	245.6	927.0	276.8	1427.0	289.5
437.0	246.8	937.0	275.7	1437.0	287.3
447.0	247.5	947.0	277.2	1447.0	287.5
457.0	248.3	957.0	275.9	1457.0	288.4
467.0	249.7	967.0	276.0	1467.0	290.2
477.0	250.6	977.0	277.9	1477.0	290.4
487.0	251.4	987.0	277.7	1487.0	288.7
497.0	252.3	997.0	277.8	1497.0	290.1
507.0	253.3	1007.0	278.8	1507.0	289.6
517.0	254.3	1017.0	278.6	1517.0	290.8
527.0	254.8	1027.0	279.1	1527.0	291.7
537.0	255.6	1037.0	280.1	1537.0	293.4

547.0	255.8	1047.0	278.3	1547.0	294.5
557.0	256.3	1057.0	278.3	1557.0	293.9
567.0	256.7	1067.0	278.8	1567.0	294.0
577.0	257.7	1077.0	279.6	1577.0	294.4
587.0	258.2	1087.0	280.3	1587.0	293.5
597.0	259.2	1097.0	280.2	1597.0	292.9
607.0	260.4	1107.0	280.9	1607.0	294.6
617.0	261.7	1117.0	281.2	1617.0	293.8
627.0	262.7	1127.0	280.6	1627.0	292.0
637.0	263.4	1137.0	280.8	1637.0	292.4
647.0	264.5	1147.0	279.9	1647.0	293.4
657.0	265.3	1157.0	280.2	1657.0	294.5
667.0	264.9	1167.0	280.8	1667.0	296.3
677.0	264.2	1177.0	281.1	1677.0	293.8
687.0	265.5	1187.0	282.5	1687.0	296.8
697.0	266.0	1197.0	284.5	1697.0	298.9
707.0	266.4	1207.0	283.7	1707.0	298.9
717.0	266.2	1217.0	284.5	1717.0	298.3
727.0	265.1	1227.0	285.2	1727.0	299.4
737.0	265.1	1237.0	285.9	1737.0	296.0
747.0	265.2	1247.0	285.6	1747.0	296.0
757.0	265.7	1257.0	285.5	1757.0	297.4
767.0	266.3	1267.0	287.5	1767.0	299.5
777.0	266.8	1277.0	286.6	1777.0	301.0
787.0	267.7	1287.0	283.9	1787.0	300.3
797.0	269.3	1297.0	284.6	1797.0	299.4
807.0	270.3	1307.0	284.6	1807.0	297.7

Таблица S13.2. Параметры сглаживающих моделей теплоемкости Lu₂O₃·2HfO₂,

2-35 K	2-35 K					
$C_{p}=\Sigma A_{i}T$	i					
1	0.03737					
2	-00777					
3	-0.000446	586				
4	0.0000520	0055				
5	-0.000002	203298				
6	0.000000	0202822				
20-1800	K					
CpFit						
α	$\Delta(\alpha)$	$s(\alpha)$	θ / Κ	$\Delta(\theta) / K$	<i>s</i> (θ) / K	
1.948	0.1294	0.06575	5815	259.6	131.9	
3.649	0.2297	0.1167	300.2	26.97	13.70	

T	a	$\alpha_{\rm T} \times 10^{-6}$	$\alpha_{298} \times 10^{-6}$	TE
K	Å	1/K	1/K	%
Пирохлоры				
$La_2Hf_2O_7$				
298	10.772	8.19	8.19	0.00
303	10.774	8.20	8.20	0.02
473	10.786	8.63	8.65	0.13
573	10.796	8.89	8.91	0.22
673	10.806	9.14	9.17	0.32
773	10.818	9.39	9.43	0.43
873	10.828	9.64	9.69	0.52
973	10.838	9.89	9.95	0.61
1073	10.850	10.14	10.22	0.72
1173	10.860	10.39	10.48	0.82
1273	10.870	10.64	10.74	0.91
Pr ₂ Hf ₂ O ₇				
298	10.680	7.36	7.36	0.00
473	10.692	8.17	8.18	0.11
573	10.703	8.64	8.65	0.22
672	10.710	9.10	9.12	0.28
773	10.721	9.56	9.60	0.38
873	10.733	10.02	10.07	0.50
973	10.745	10.48	10.54	0.61
1073	10.756	10.94	11.01	0.71
1173	10.767	11.39	11.48	0.81
1273	10.778	11.85	11.96	0.92
Nd ₂ Hf ₂ O ₇				
298	10.651	9.00	9.00	0
303	10.655	9.01	9.00	0.004
473	10.669	9.39	9.00	0.16
573	10.679	9.62	9.00	0.26
673	10.689	9.84	9.00	0.35
773	10.701	10.07	9.00	0.46
873	10.712	10.29	9.00	0.56
973	10.724	10.51	9.00	0.66
1073	10.734	10.74	9.00	0.77
1173	10.746	10.96	9.00	0.88
1273	10.757	11.18	9.00	0.99
$Sm_2Hf_2O_7$				

Таблица S15.1. Температурная зависимость параметра а кубических решеток, коэффициенты линейного термического расширения – текущий *α*_T и относительный *α*₂₉₈, линейное относительное расширение двойных оксидов гафния и лантаноидов.

				_
298	10.580	10.90	10.90	0
299	10.583	10.90	10.90	0.03
473	10.602	10.88	10.90	0.21
573	10.613	10.87	10.90	0.31
673	10.624	10.86	10.90	0.42
773	10.636	10.85	10.90	0.53
873	10.648	10.84	10.90	0.64
973	10.660	10.82	10.90	0.76
1071	10.672	10.81	10.90	0.87
1173	10.683	10.80	10.90	0.97
1273	10.694	10.79	10.90	1.08
$Eu_2Hf_2O_7$				
298	10.541	11.79	11.79	0
303	10.543	11.79	11.79	0.02
473	10.561	11.77	11.79	0.19
573	10.572	11.76	11.79	0.29
673	10.586	11.74	11.79	0.43
773	10.600	11.73	11.79	0.56
873	10.613	11.71	11.79	0.68
973	10.625	11.70	11.79	0.80
1073	10.638	11.69	11.79	0.92
1173	10.649	11.67	11.79	1.03
1273	10.661	11.66	11.79	1.14
Gd ₂ Hf ₂ O ₇				
298	10.516	11.75	11.75	0
303	10.522	11.75	11.75	0.057
473	10.538	11.73	11.75	0.209
573	10.548	11.72	11.75	0.303
673	10.562	11.70	11.75	0.436
773	10.574	11.69	11.75	0.549
873	10.588	11.67	11.75	0.680
973	10.602	11.65	11.75	0.811
1073	10.612	11.65	11.75	0.905
1173	10.626	11.63	11.75	1.035
1273	10.638	11.62	11.75	1.147
Tb ₂ Hf ₂ O ₇		1	1	1
298	10.4396	13.78	13.78	0.00
301	10.450	13.77	13.78	0.10
473	10.464	13.75	13.78	0.23
573	10.480	13.73	13.78	0.39
673	10.492	13.71	13.78	0.50

773	10.506	13.69	13.78	0.64
873	10.522	13.67	13.78	0.79
973	10.538	13.65	13.78	0.94
1073	10.552	13.63	13.78	1.08
1173	10.552	13.63	13.78	1.00
1173	10.500	13.02	12.70	1.21
12/3	10.378	13.00	15.78	1.55
Флюориты				
$Dy_2O_3 \cdot 2HIO_2$	5 212	8 5 1	8 5 1	0
304	5 214	8.54	8.54	0.017
473	5 221	9.04	9.42	0.15
573	5 226	9.40	9.42	0.15
673	5.231	10.41	10.45	0.34
773	5.237	10.92	10.97	0.46
873	5.244	11.42	11.49	0.59
973	5.250	11.92	12.01	0.71
1073	5.256	12.42	12.53	0.82
1173	5.262	12.92	13.05	0.94
1273	5.269	13.41	13.56	1.07
Ho ₂ O ₃ ·2HfO ₂				1
293	5.197	7.61	7.61	0
298	5.198	7.64	7.65	0.02
473	5.203	8.83	8.84	0.12
573	5.209	9.50	9.52	0.23
673	5.214	10.16	10.20	0.33
773	5.220	10.83	10.88	0.44
873	5.226	11.50	11.56	0.56
973	5.233	12.16	12.24	0.69
1073	5.239	12.82	12.92	0.81
11/3	5.245	13.48	13.60	0.92
$\frac{12/3}{12}$	5.252	14.13	14.28	1.06
$Er_2O_3 \cdot 2HIO_2$	5 102	<u> </u>	<u> </u>	0
290	5.102	0.01	0.01	0
299	5.183	8.02	8.02	0.01
473	5.190	9.08	9.09	0.15
573	5.195	9.69	9.71	0.24
673	5.200	10.03	10.33	0.34
773	5.206	10.90	10.95	0.46
873	5.212	11.51	11.57	0.57
973	5.218	12.11	12.19	0.69
1073	5.225	12.71	12.81	0.82
1173	5.231	13.30	13.43	0.94
1273	5.238	13.90	14.05	1.07
Tm ₂ O ₃ ·2HfO ₂			1	1
298	5.171	8.81	8.81	0

473	5.177	9.74	9.71	0.12
573	5.182	10.26	10.28	0.21
673	5.188	10.79	10.82	0.33
773	5.194	11.31	11.36	0.44
873	5.200	11.83	11.89	0.56
973	5.207	12.34	12.43	0.7
1073	5.213	12.86	12.97	0.81
1173	5.220	13.38	13.50	0.95
1273	5.226	13.89	14.04	1.06
Yb ₂ O ₃ ·2HfO	2			
298	5.153	7.62	7.62	0
303	5.154	7.66	7.66	0.02
473	5.160	8.83	8.84	0.13
573	5.165	9.52	9.54	0.23
673	5.170	10.20	10.24	0.33
773	5.176	10.88	10.93	0.44
873	5.182	11.57	11.63	0.56
973	5.188	12.24	12.33	0.68
1073	5.195	12.92	13.02	0.81
1173	5.201	13.59	13.72	0.93
1273	5.208	14.27	14.42	1.06
Lu ₂ O ₃ ·2HfO	2		l	
298	5.145	6.90	6.90	0
301	5.146	6.92	6.92	0.01
473	5.152	8.13	8.14	0.13
573	5.156	8.84	8.86	0.21
673	5.161	9.54	9.57	0.30
773	5.167	10.24	10.29	0.42
873	5.172	10.94	11.00	0.52
973	5.178	11.64	11.71	0.63
1073	5.184	12.33	12.43	0.75
1173	5.191	13.02	13.14	0.89
1273	5.197	13.71	13.85	1.003