ИНСТИТУТ ЭКСПЕРИМЕНТАЛЬНОЙ МИНЕРАЛОГИИ ИМ. АКАДЕМИКА Д.С. КОРЖИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Криставчук Александр Викторович

Фазовые отношения и термодинамические свойства фаз в системах Ag-Pd-X,

где X = S, Se, Te

Специальность 1.4.4 – Физическая химия

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата химических наук

Научный руководитель: д.х.н., доцент Д.А. Чареев

Москва – 2023 г.

Оглавление

Введение	4
Глава 1. Обзор литературы	9
1.1 Фазовые отношения в бинарных системах и термодинамические свойства	
соединений	9
1.1.1 Система Ag-Pd	9
1.1.2 Система Ag-S	. 12
1.1.3 Система Ag-Se	. 13
1.1.4 Система Ag-Te	. 17
1.1.5 Система Pd-S	. 19
1.1.6 Система Pd-Se	. 22
1.1.7 Система Pd-Te	. 25
1.2 Трёхкомпонентные соединения	. 29
1.3 Заключение	. 31
Глава 2. Методика исследования фазовых отношений и синтеза новых соединен	ний
	. 32
2.1 Синтез образцов	. 33
2.2 Анализ продуктов синтеза	. 35
Глава 3. Фазовые отношения в системах Ag-Pd-халькоген	. 37
3.1 Система Ag-Pd-S	. 37
3.2 Система Ag-Pd-Se	. 43
3.3 Система Ag-Pd-Te	. 54
3.4 Выводы к главе 3	. 66
Глава 4. Новые соединения и их свойства	. 67
4.1 Новые соединения в системе Ag-Pd-Se	. 67
4.2 Структура и некоторые физические свойства новых соединений в системе	
Ag-Pd-Se	. 67
- 4.3 Определение транспортных свойств соединений (Ag.Pd) ₂₂ Se ₆ и AgPd ₃ Se	. 71
4.4 Другие тройные соединения	. 74
	• / •

Глава 5. Определение термодинамических свойств равновесий с участием
синтетических минералов методом измерения электродвижущих сил в
твердотельных гальванических ячейках77
5.1 Теоретическое обоснование77
5.2 Конструкция твердотельных гальванических ячеек для изучения
термодинамических свойств равновесий ЭДС-методом
5.3 Равновесие PdS (высоцкит) – PdS ₂
5.4 Равновесие Ag ₂ Pd ₃ Se ₄ (кристанлеит)-PdSe ₂ -Ag ₂ Se (науманнит) 86
5.5 Равновесие PdTe (котульскит)–PdTe ₂ (меренскиит)
5.6 Выводы к главе 5
Выводы
Благодарности
Приложения
Приложение 1. Аналитическая зависимость межплоскостного расстояния от
состава сплава
Приложение 2. Составы соединений в системе Ag-Pd-Se, полученные методом
PCMA
Список цитируемой литературы111

Введение

Получение новых экспериментальных данных по фазовым равновесиям и термодинамическим свойствам соединений представляет интерес для различных прикладных применений – в минералогии, химической технологии, материаловедении, технологии материалов. Например, для понимания условий формирования месторождений необходимо знание физико-химических параметров образования соединений и фазовых отношений в простых системах.

Исследуемые системы Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te содержат большое количество соединений, имеющих природные аналоги – минералы. Минералы систем Ag-Pd-X (X – S, Se, Te) присутствуют на месторождениях различного генезиса (Vymazalová and Chareev, 2018) (магматогенные, гидротермальные, эпитермальные, осадочные), однако данные по фазовым отношениям в этих системах до настоящего времени отсутствовали. Результаты исследований фазовых отношений в данных системах, а также термодинамических свойств некоторых фазовых ассоциаций, могут быть использованы при физикохимическом анализе условий рудообразования. Физико-химический анализ по Н.С. Курнакову – это геометрический метод исследования результата взаимодействия химических соединений, в основе которого лежит построение и анализ диаграмм Наиболее «состав-свойство». диаграммы распространены состояния, характеризующие зависимость между исходным составом систем и температурой фазовых превращений, протекающих в этих системах, т.е. фазовые диаграммы.

Кроме того, полученные данные могут быть использованы при любых исследованиях в рамках изученных систем. Новые обнаруженные химические соединения могут впоследствии быть найдены в виде минералов в природе.

Цель и задачи работы

Целью работы является построение фазовых диаграмм систем Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te при различных температурах и изучение свойств новых химических соединений, а также исследование термодинамических свойств некоторых равновесий, содержащих аналоги минералов. Для этого решались следующие задачи:

- построение изотермических сечений тройных фазовых диаграмм в интервале температур 350–530 °С и давлении собственного пара с помощью закалочных экспериментов;

- синтез новых тройных соединений и определение их температурного интервала стабильности и области гомогенности, подготовка образцов некоторых новых соединений для определения кристаллической структуры, электропроводности и других физических свойств;

- определение термодинамических свойств равновесий с участием аналогов минералов в рамках исследуемых тройных систем (энергия Гиббса реакции, фугитивность летучего компонента над равновесием) методом твердотельной гальванической ячейки с Ag⁺-проводящим твердым электролитом (ЭДС-метод) в широком температурном интервале и атмосферном давлении.

Научная новизна

В результате проведенных исследований впервые получены изотермические сечения фазовых диаграмм систем Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te, синтезированы новые тройные халькогениды ((Ag,Pd)₂₂Se₆, AgPd₃Se, Ag₆Pd₇₄Se₂₀, Ag₃Pd₁₃S₄, (Pd,Ag)₈Te₃ и (Pd,Ag)₄Te) и описаны некоторые их физические свойства. ЭДСметодом с серебропроводящим твердым электролитом впервые получены температурные зависимости фугитивности халькогенов для равновесий с участием синтетических минералов.

Положения, выносимые на защиту:

1. Фазовые отношения в системах Ag-Pd-S, Ag-Pd-Se при 700 К и 800 К и Ag-Pd-Te при 623 К и 700 К и давлении собственного пара.

2. Новые соединения $(Ag,Pd)_{22}Se_6$, $AgPd_3Se$, $Ag_6Pd_{74}Se_{20}$, $Ag_3Pd_{13}S_4$, $Ag_{0.5+x}Pd_{7.5-x}Te_3$ (0.02 < x < 0.83) и $Ag_{2-x}Pd_{2+x}Te$ (0.18 < x < 0.24) и растворимости третьего компонента в халькогенидах серебра и палладия.

5

3. Температурные зависимости фугитивности вполне подвижных компонентов для следующих равновесий:

 $2PdS + S_2(gas) = 2PdS_2, 325 < T, K < 497$ $3/2Ag_2Pd_3Se_4 + Se_2(gas) = 3/2Ag_2Se + 9/2PdSe_2, 425 < T, K < 644$ $2PdTe + Te_2(gas) = 2PdTe_2, 371 < T, K < 488.$

Фактическая основа и методика исследования

Работа основана на более чем 400 закалочных опытах и 3 электрохимических экспериментах продолжительностью от 60 суток до 16 месяцев. Закалочные эксперименты проводились методом изотермического «сухого» синтеза в вакуумированых ампулах из кварцевого стекла.

Продукты закалочных экспериментов идентифицировались параллельно методами рентгенофазового анализа (РФА) и рентгеноспектрального микроанализа (РСМА).

Для определения термодинамических свойств использовался метод электродвижущих сил путём пересчёта ЭДС полностью твердотельной гальванической ячейки с серебропроводящим электролитом (AgI и RbAg₄I₅) в фугитивность летучего компонента по минимум 23 экспериментальным точкам.

Практическая значимость работы

Полученные фазовые диаграммы показывают все возможные ассоциации фаз в системах, в том числе и минеральные, пополняют базы данных, являются полезными для работ в рамках системы.

Новые синтезированные соединения могут быть использованы в качестве прекурсоров при изготовлении нанопористых серебро-палладиевых сплавов различного состава и текстуры (Zhang and Li, 2012). Развитая поверхность может быть получена за счёт термического разложения прекурсоров. Наличие большого количества серебро-палладиевых халькогенидов может дать возможность варьировать не только состав, но характеристики поверхностей. Нанопористые сплавы являются перспективными электрохимическими катализаторами (Luc and Jiao, 2017), а также могут быть проверены на способность к хранению водорода.

Термодинамические свойства равновесий с участием синтетических минералов и их стандартные термодинамические свойства важны для определения их форм переноса и отложения рудного материала и для физико-химического анализа условий рудообразования.

Апробация работы

Результаты работы по теме диссертации докладывались на XVI Российском Совещании по Экспериментальной Минералогии (*Черноголовка, 2010 г.*), на III и IV Всероссийской школе молодых ученых «Экспериментальная Минералогия, Петрология и Геохимия» (*Черноголовка, 2012 и 2013 гг.*), на Научном семинаре, посвященном научной деятельности профессора, доктора химических наук Игоря Львовича Ходаковского (*Дубна, 2013 г.*) и на XVII Всероссийском Совещании по Экспериментальной Минералогии (*Сосновка – Новосибирск, 2015 г.*).

Публикации

По теме диссертации опубликовано 17 работ, из них 7 статей в журналах, включенных в перечень ИОНХ рецензируемых научных изданий, и 10 тезисов в сборниках докладов научных конференций.

Структура и объем работы

Диссертация изложена на 120 страницах машинописного текста, содержит 36 рисунков и 27 таблиц. Работа состоит из введения, пяти глав, заключения, двух приложений и списка цитируемой литературы. Список литературы содержит 104 наименования. Публикации с участием автора отмечены литерой А.

Соответствие диссертации паспорту специальности

Диссертационная работа соответствует паспорту специальности 1.4.4 – физическая химия в пунктах: 2. Экспериментальное определение термодинамических свойств веществ, расчет термодинамических функций простых и сложных систем, в том числе на основе методов статистической термодинамики, изучение термодинамики фазовых превращений и фазовых переходов; 5. Изучение физико-химических свойств систем при воздействии внешних полей, а также в экстремальных условиях высоких температур и давлений.

Глава 1. Обзор литературы

Краевые фазовые диаграммы рассматриваемых тройных систем (Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te) изучены и описаны в литературе. При построении фазовых отношений за основу были взяты работы по системам Ag-Pd (Karakaya and Tompson, 1988), Ag-S (Sharma and Cheng, 1986), Ag-Se (Massalski, 1992), Ag-Te (Karakaya and Tompson, 1991) и (Voronin et al., 2017) и Pd-S, Pd-Se, Pd-Te (Okamoto, 1992).

1.1 Фазовые отношения в бинарных системах и термодинамические свойства соединений

1.1.1 Система Ag-Pd

Система включает в себя три равновесные фазы: жидкость, твердый раствор кубической гранецентрированной структуры и пар (Karakaya and Tompson, 1988). В системе наблюдается полная смесимость в жидком и твердом состоянии вследствие тождественных структур и схожих параметров ячейки серебра и палладия, что показано в таблице 1.

Рисунок 1 – Фазовая диаграмма системы Ag-Pd (Karakaya and Tompson, 1988)

Фаза	Состав	Пространственная	Прототип	Параметр
	в ат.% Pd	группа		решетки в нм
Ag(s)	0	Fm3m	Cu	0.40861
Pd(s)	100	Fm3m	Cu	0.38901

Таблица 1 – Кристаллическая структура и параметры решетки при 298 К (Karakaya and Tompson, 1988)

Также в работе (Karakaya and Tompson, 1988) дается обзор термодинамических свойств системы, в нем говорится, что термодинамические свойства сплавов были взяты из работ по калориметрии. Кроме того, в обзоре представлены данные по энтальпии смешения и активности для сплавов Ag-Pd. Следствием обзора является таблица 2. При построении фазовой диаграммы авторами работы за стандартное состояние было принято жидкое, поэтому в таблице 2 величины G° (Ag, L) и G° (Pd, L) равны 0.

Таблица 2 – Термодинамические свойства фаз в системе Ag-Pd (Karakaya and Tompson, 1988)

Фаза	G°, Дж∙моль ⁻¹
Ag, L	0
Pd, L	0
Ag, cr	$-1218.86 - 90.7247T - 0.4799 \cdot 10^{-2}T^{2} + 13.74T \ln T - 266500/T$
Pd, cr	$21890.5 - 230.357T - 0.7598 \cdot 10^{-2}T^{2} + 31.208T \ln T - 7121600/T$
Ag, gas	$281525 - 214.495T + 12.686T \ln T$
Pd, gas	412574 – 239.922 <i>T</i> + 13.941T ln <i>T</i>

Термодинамические свойства жидкой фазы:

 $\Delta H(L) = -22900 X_{Ag} X_{Pd} + 35500 X_{Ag} X^2_{Pd} - 2500 X_{Ag} X^3_{Pd}$, Дж·моль⁻¹; S(L) = 0, Дж·моль⁻¹·К⁻¹; X_{Ag} и X_{Pd} – процентное содержание. Термодинамические свойства твердой фазы: $\Delta H(s) = -32810X_{Ag}X_{Pd} + 24460X_{Ag}X^2_{Pd}, Дж \cdot моль^{-1};$ $S(s) = -6.11X_{Ag}X_{Pd} - 4.417X_{Ag}X^2_{Pd}, Дж \cdot моль^{-1} \cdot K^{-1}; X_{Ag}u X_{Pd} - процентное содержание.$

Кроме того, в статье приведено изменение параметров решетки сплавов в зависимости от состава и их отклонение от закона Вегарда (Рисунок 2). Данные зависимости были использованы при расчете состава сплавов по величине параметров ячейки этих сплавов, полученных из рентгенограмм.

Рисунок 2 – Зависимость параметра решетки сплавов Ag-Pd от состава (а) и отклонение параметра решетки сплава от закона Вегарда (б) (Karakaya and Tompson, 1988)

В рисунке 26, по-видимому, допущено несколько ошибок: во-первых, из рисунка 2a следует, что отклонение отрицательное, то есть шкала должна быть обратная, а во-вторых, величина отклонения завышена на один порядок. С учетом данных ошибок проводилось нахождение аналитической зависимости межплоскостного расстояния от состава сплава, которое описано в Приложении 1. Зависимость использовалась для вычисления составов сплавов, исходя из рефлексов на их рентгенограммах.

1.1.2 Система Ag-S

Согласно обзорной работе (Sharma and Chang, 1986) на фазовой диаграмме Ag-S (Рисунок 3) присутствует только одно соединение — Ag₂S, которое имеет три аллотропные модификации. α-Ag₂S (аналог минерала акантит) при 176 °C претерпевает фазовый переход в β-Ag₂S (аналог минерала аргентит), который, в свою очередь, при 571 °C со стороны серебра и при 622 °C со стороны серы переходит в γ -Ag₂S. α -Ag₂S является стехиометрическим соединением, тогда как β -Ag₂S и γ-Ag₂S имеют область гомогенности с содержанием серебра от 33.3 до 33.5% 33.2 до 33.6% соответственно, зависящую И от от температуры. Термодинамические свойства модификаций Ag₂S исследованы и представлены в справочнике (Barin, 1997) (таблица 3). Растворимостью серебра в Ag₂S при интересующих нас температурах можно пренебречь.

Рисунок 3 – Фазовая диаграмма системы Ag-S (Sharma and Chang, 1986).

Соединение	<i>−∆јG</i> °, кДж∙моль ⁻¹	S° , Дж·К $^{-1}$ ·моль $^{-1}$	<i>−∆_fH</i> °, кДж∙моль ⁻¹
a-Ag ₂ S	40.52	144.01	32.59
β-Ag ₂ S	47.43	169.01	35.02
γ-Ag ₂ S	47.58	169.44	35.04

Таблица 3 – Термодинамические свойства Ag₂S (Barin, 1995)

α-Ag₂S (акантит) имеет моноклинную структуру с простанственной группой 2/m, β-Ag₂S (аргентит) имеет кубическую структуру, пространственная группа Im3m (Emmons et al. 1926).

1.1.3 Система Ag-Se

Обзор по системе представлен в работе (Massalski, 1992). В данной системе, подобно системе Ag-S, существует только одно двойное соединение Ag₂Se (Рисунок 4). Ag₂Se претерпевает переход из α- в β-форму при 403 К в равновесии с металлическим серебром и 405 К – в равновесии с жидким селеном. Ag₂Se является строго стехиометричным соединением. При 1170 К фаза плавится конгруэнтно с образованием расплава того же состава.

Рисунок 4 – Фазовая диаграмма системы Ag-Se (Massalski, 1992)

Низкотемпературный Ag₂Se — орторомбический, высокотемпературный – кубический объемно-центрированный (ОЦК).

В работе (Воронин и Осадчий, 2011) приводится обзор по термодинамическим свойствам селенида серебра и приводится сравнительная таблица (таблица 4).

Таблица 4 – Сравнение значений стандартных термодинамических свойств науманнита (Воронин и Осадчий, 2011)

Соединение	$-\Delta_f G^\circ$,	S°,	$-\Delta_f H^\circ$,	Ссылка
	кДж моль-1	Дж К ⁻¹ моль-1	кДж∙моль -1	
a-Ag ₂ Se	49.47	149.99	42.73	(Osadchii and Echmaeva, 2007)
α-Ag ₂ Se	48.90	148.20	42.70	(Nasar and Shamsuddin, 1997)
α-Ag ₂ Se	49.19	150.08	42.41	(глицерин)
α-Ag ₂ Se	49.59	149.20	43.09	(AgCl)
β-Ag ₂ Se	47.43	169.01	35.02	(Nasar and Shamsuddin, 1997)
β-Ag ₂ Se	47.58	169.44	35.04	(AgCl)

В работе (Nasar and Shamsuddin, 1997) исследовался только высокотемпературный науманнит (β-Ag₂Se) в равновесии с жидким селеном, а в

качестве электролита использовался расплав смеси солей LiCl-KCl с добавлением AgCl. Стандартные термодинамические свойства низкотемпературного науманнита (α-Ag₂Se) авторами вычислены с использованием литературных данных по энтальпиям плавления селена и α-β полиморфного превращения в селениде серебра.

В работе (Osadchii and Echmaeva, 2007) термодинамика α- и β-Ag₂Se определялась в температурных интервалах 298.15–405.4 К и 405.4–457 К соответственно, исследования проводились методом ЭДС–измерений в полностью твердотельной электрохимической ячейке с серебропроводящим электролитом Ag₄RbI₅.

Авторами работы (Воронин и Осадчий, 2011) измерения проводились несколькими способами ЭДС-измерений: с помощью AgCl в качестве твердого электролита и в глицериновых растворах солей серебра, что и отражено в таблице 4. Для ячейки с глицерином температурный интервал составил 310–400 К, а с электролитом AgCl для α- и β-Ag₂Se температурные интервалы составили 300–395.4 К и 400–465 К соответственно.

На рисунке 5 изображены температурные зависимости ЭДС, полученные с использованием различных электролитов в работе Воронина и Осадчего (2011), в области излома происходит фазовый переход $\alpha \rightarrow \beta$ -Аg₂Se.

Рисунок 5 – Температурные зависимости ЭДС, полученные с использованием различных электролитов: а – общий вид; б – детализация низкотемпературной области (Воронин и Осадчий, 2011)

Все термодинамические данные хорошо согласуются и могут быть использованы нами при термодинамических расчетах.

1.1.4 Система Ад-Те

Обзор на данную систему представлен в статье (Karakaya and Thompson, 1991). Также в более поздней работе (Voronin et al., 2017) экспериментально определили термодинамические свойства теллуридов серебра и уточнена фазовая диаграмма Ag-Te в координатах T - x (Рисунок 6) и lgf Te₂ (gas) – 1/T с учётом литературных и экспериментальных данных.

Рисунок 6 – Фазовая диаграмма системы Ag-Te (Voronin et al., 2017) и (Karakaya and Thompson,

В отличие от предыдущих систем серебро-халькоген, в данной системе при интересующих нас температурах присутствует три соединения: Ag₂Te, Ag_{1.9}Teu Ag₅Te₃, два из которых имеют природные аналоги — минералы штютцит (Ag₅Te₃) и гессит (Ag₂Te).

Соединение Ag₂Te имеет три аллотропные модификации. α -Ag₂Te является стехиометричным соединением, β -Ag₂Te имеет область гомогенности от 33.3 до 33.7 % ат. Te, для γ -Ag₂Te область гомогенности находится в диапазоне от 33.3 до 33.8 % ат.Te. При избытке теллура низкотемпературный моноклинный α -Ag₂Te при температуре выше 145 °C переходит в гранецентрированный β -Ag₂Te, который, в свою очередь, при 689 °C переходит в объёмоцентрированный γ -Ag₂Te, при избытке серебра температуры перехода составляют 145 °C и 802 °C соответственно.

Аg_{1.9}Те имеет узкую область гомогенности (от 34.35 до 34.7 ат.% Те) и существует в температурном диапазоне между 120 °C и 460 °C. Выше 460 °C соединение инконгруэнтно распадается на Ag₂Te и расплав, ниже 120 °C — на Ag₂Te и Ag₅Te₃. Полиморфный переход между α- и β-Ag_{1.9}Te происходит при 178 °C независимо от состава.

Аg₅Te₃ формируется при перитектической реакции между Ag₂Te и богатым теллуром расплавом. Согласно (Kiukkola and Wagner, 1957; Cabri, 1965 и Kracek et al., 1966) реальное соотношение Ag:Te в данном соединении составляет от 1.88 до 1.91. Гексагональная модификация α -Ag₅Te₃ переходит в β -форму при 295 °C в присутствии избытка теллура и при 265 °C при избытке серебра.

Также в системе присутствует соединение AgTe — минерал импрессит. Он стабилен при температуре ниже 200 °C, однако его невозможно получить прямым синтезом из элементов (Honea, 1964; Cabri, 1965).

Согласно (Kracek et al., 1966) высокотемпературные β-модификации соединений Ag₂Te и Ag₅Te₃ являются обратимыми и не закаливаются, то есть не сохраняют структуру при резком уменьшении температуры. Известные кристаллические структуры теллуридов серебра приведены в таблице 5.

Фаза	Структура	Пространственная группа	Ссылка
Ag ₂ Te	моноклинная	$P2_1/c$	(Schneider and Schulz, 1993)
Ag ₅ Te ₃	гексагональная	P6/mmm	(Cabri, 1965)

Таблица 5 – Кристаллическая структура фаз в системе Ag-Te

В работе (Voronin et al., 2017) ЭДС-методом определены термодинамические свойства теллуридов серебра, а также приведено их сравнение с литературными данными, рекомендуемые данные приведены в таблице 6.

Таблица 6 – Стандартные термодинамические свойства теллуридов серебра (Voronin et al., 2017)

Соединение	∆ _/ G°, кДж∙моль ⁻¹	<i>S</i> °, Дж∙К ⁻¹ ∙моль ⁻¹	∆ <i>_fH</i> °, кДж∙моль ⁻¹
Ag ₅ Te ₃	-101.7 ± 0.4	417.3 ± 6.1	-85.19 ± 0.15
α-Ag ₂ Te	-40.17 ± 0.13	152.0 ± 2.0	-35.05 ± 0.13
Ag _{1.9} Te	-37.37 ± 0.91	59.6 ± 3.9	-28.69 ± 1.50
β-Ag ₂ Te	-38.56 ± 0.93	165.2 ± 4.1	-29.49 ± 1.56

1.1.5 Система Pd-S

Окатото (1992) приводит фазовую диаграмму системы (Рисунок 7), основанную на экспериментальных работах (Weibke and Laar, 1935) и более поздней (Taylor, 1985), в которой методом дифференциального термического анализа были уточнены фазовые отношения. В системе присутствует пять соединений, четыре из которых (Pd₄S, Pd₁₆S₇, PdS и PdS₂) устойчивы при интересующих нас температурах. Соединение Pd₃S устойчиво в температурном интервале 556–646 °C, однако, при определённых условиях, может быть также обнаружено в закалочных опытах.

Рисунок 7 – Фазовая диаграмма системы Pd-S (Okamoto, 1992)

В более поздней работе (Hu et al., 2010) проводилось моделирование фазовой диаграммы данной системы, которое подтверждает ранее опубликованные фазовые отношения.

Соединения Pd₄S, PdS и PdS₂ были идентифицированы в работе (Weibke and Laar, 1935), также в ней была обнаружена высокотемпературная β -фаза между Pd₄S и PdS, которая позже в статье (Rost and Vestersjo, 1968) была идентифицирована как Pd₃S. Соединение Pd₁₆S₇ было описано в работе (Gronvold and Rost, 1956). Кристаллические структуры сульфидов палладия сведены в таблицу 7.

Фаза	Структура	Пространственная группа	Ссылка
Pd ₄ S	тетрагональная	P421c	(Weibke and Laar, 1935)
Pd ₃ S	орторомбическая	Ama2	(Rost and Vestersjo, 1968)
$Pd_{16}S_7$	кубическаяОЦК	I43m	(Grønvold and Røst, 1956)
PdS	тетрагональная	P42/m	(Brese et al., 1985)
PdS ₂	орторомбическая	Pbca	(Grønvold and Røst, 1957)

Таблица 7 – Кристаллическая структура фаз в системе Pd-S

В литературе присутствуют некоторые термодинамические свойства сульфидов палладия. Так в статье (Zubkov et al., 1998) методом высокотемпературной калориметрии смешения определены стандартные мольные энтальпии образования сульфидов палладия:

 $\Delta_{\rm f} H_{\rm m}^{\circ}$ (PdS, 298.15 K) = $-(78.1 \pm 11.0)$ кДж·моль,

 $\Delta_{\rm f} H_{\rm m}^{\circ} ({\rm Pd}_{16} {\rm S}_7, 298.15 {\rm K}) = -(580.1 \pm 36.2)$ кДж,

 $\Delta_f H_m^{\circ}(Pd_3S, 298.15 \text{ K}) = -(96.5 \pm 10.5) \text{ кДж · моль,}$

 $\Delta_{f}H_{m}^{\circ}(Pd_{4}S, 298.15 \text{ K}) = -(99.2 \pm 11.2)$ кДж·моль.

В статье (Niwa et al., 1962) приводятся результаты исследования методом электродвижущих сил в гетерогенных системах PdS-H₂-Pd₄S-H₂S и Pd₄S-H₂-Pd-H₂S в диапазоне температур от 612 K до 795 K, из которых были рассчитаны энергии Гиббса реакций образования Pd₄S, PdS и PdS₂. Однако в данной работе предполагалось, что промежуточные соединения $Pd_{16}S_7$ и Pd₃S являются нестабильными, и, по-видимому, ошибочно предполагалось равновесие Pd₄S–PdS, из которого и проводились последующие расчёты. Вследствие этого, полученные данные не могут быть использованы нами при расчетах.

В работе (Polotnyanko et al., 2020) методами адиабатической и дифференциальной сканирующей калориметрии были определены $C_p^{\circ} = 43.65 \pm 0.09 \ \text{Дж} \cdot \text{моль}^{-1} \cdot \text{K}^{-1}$ и S° = 51.98 ± 0.10 Дж · моль⁻¹ · K⁻¹ для PdS. Приведённый в статье расчёт стандартной энтальпии образования не может быть использован, так как стандартная энергия Гиббса PdS в нём взята из работы (Niwa et al., 1962).

В работе (Hu et al., 2010) помимо моделирования фазовых отношений проводился расчёт стандартных энтальпий образования теллуридов палладия с использованием специального математического аппарата, основанный на имеющихся литературных данных. Результаты расчёта находятся в пределах ошибки данных, полученных (Zubkov et al., 1998).

1.1.6 Система Pd-Se

В системе Pd-Se присутствует достаточно большое количество соединений, по сравнению с системой Pd-S (Рисунок 8). Для настоящего исследования наибольший интерес представляют те фазы, которые существуют в температурном интервале проведения измерений. Кроме того, могут представлять интерес фазы, стабильные при более низких температурах, так как, вероятно, кинетические условия могут не позволить нам закаливать синтезированные при высоких температурах фазы.

Рисунок 8 – Фазовая диаграмма системы Pd-Se (Okamoto, 1992)

В работе (Okamoto, 1992) приводится литературный обзор соединений данной системы, основанный на экспериментальных работах (Olsen et al., 1979) и (Takabatake et al., 1987).

α- и β-Pd₄Se: о существовании тетрагонального Pd₄Se сообщается в работе (Roessler, 1895). β-Pd₄Se плавится инконгруэнтно при температуре 817 К и распадается на Pd₉Se₄ и жидкий расплав (Olsen et al., 1979) (согласно (Takabatake et

al., 1987) 800 К). Полиморфный переход при 800 К (788 К, согласно (Takabatake et al., 1987)) определен методом дифференциального термического анализа (ДТА) и подтвержден измерениями. Границы области гомогенности неизвестны, и, вероятно, данное соединение можно считать строго стехиометрическим.

Рd₃₄Se₁₁: в работе (Takabatake et al., 1987) фаза идентифицирована как "Pd₃Se". В (Gronvold and Rost, 1956) опубликован состав "Pd_{2.8}Se", однако, повидимому, это та же фаза со сходными результатами рентгеновского анализа с аналогичной кристаллической структурой. Формула Pd₃₄Se₁₁ была определена в работе Sato et al. (1989), основываясь на кристаллографическом изучении. Температура перитектики 703К (Takabatake et al., 1987) (согласно (Gronvold and Rost, 1956) 798 K).

Pd₇Se₂: распадается по перитектической реакции на β-Pd₄Se и расплав при температуре 811 K (Takabatake et al., 1987) (согласно (Gronvold and Rost, 1956) 796 K).

Pd₇Se₄: фаза обнаружена в работах (Matkovich and Shubert) и (Takabatake et al., 1987) независимо. Температура перитектики 688 К (Takabatake et al., 1987) (согласно (Gronvold and Rost, 1956) 683К). Если Pd₃₄Se₁₁ и Pd₁₇Se₁₅ находятся в равновесии, как показывает изучение с помощью рентгеновского излучения в работе (Matthias and Geller, 1958), то Pd₇Se₄ должен быть нестабилен при низких температурах, но это не подтверждено. Температура эвтектического равновесия L ↔Pd₃₄Se₁₁ + Pd₇Se₄ 658К (Takabatake et al., 1987) (655 К согласно (Gronvold and Rost, 1956)).

Рd₁₇Se₁₅: фаза впервые была идентифицирована как "Pd_{1.1}Se" (47.6 ат.% Se) в (Sato et al., 1989), затем как "Pd₉Se₅" (47.1 ат.% Se) в работах (Shubert et al., 1957) и (Kjekshus, 1960). Точная конфигурация Pd₁₇Se₁₅ (46.9 ат.% Se) была опубликована в (Geller, 1962) и подтверждена в (Takabatake et al., 1987). До температуры 973 К не обнаружено фазовых переходов первого рода (Geller, 1962).

PdSe: о существовании PdSe было сообщено в (Rossler, 1876), (Olsen et al., 1979), и (Moser and Atynski, 1924), это было подтверждено исследованиями кристаллической структуры в работе (Kjekshus, 1960). При 893 К данное

соединение разлагается без плавления по перитектической реакции на Pd₁₇Se₁₅ и PdSe₂.

PdSe₂: существование этой фазы описано в работе (Thomassen, 1929). В работах (Sato et al., 1989) и (Kjekshus, 1960) существование PdSe₂ подтверждено изучением кристаллической структуры. При 1033 К соединение распадается по монотектической реакции на два расплава различного состава. Никаких фазовых переходов в данной фазе в литературе не описано.

Pd₉Se₂: согласно измерениям теплоемкости Pd₉Se₂ существует между 898 К и 663 К (Takabatake et al., 1987), что в хорошем согласии с температурным интервалом 888–658 К, полученным методом ДТА в работе (Gronvold and Rost, 1956). Кристаллическая структура тригональная. В таблице 8 приведена кристаллическая структура селенидов палладия.

Фаза	Структура	Пространственная группа	Ссылка
Pd ₉ Se ₂	тригональная		(Takabatake et al., 1987)
βPd ₄ Se	неизвестна		
αPd ₄ Se	тетрагональная	P42c	(Grønvold and Røst, 1962)
Pd_7Se_2	моноклинная	$P2_1/a$	(Sato et al., 1989)
$Pd_{34}Se_{11}$	моноклинная	$P2_1/n$	(Sato et al., 1989)
Pd ₇ Se ₄	орторомбическая	P21221	(Matkovic and Schubert, 1978)
$Pd_{17}Se_{15}$	кубическая	Pm3m	(Geller, 1962)
PdSe	тетрагональная	P4 ₂ /m	(Ijjaali and Ibers, 2001)
PdSe ₂	орторомбическая	Pbca	(Grønvold and Røst, 1957)

Таблица 8 – Кристаллическая структура фаз в системе Pd-Se

В работе (Каржавин, 2011) представлена таблица (таблица 9), в которой приведены термодинамические свойства некоторых селенидов палладия. Автор работы вычислил термодинамические величины, получая линейные зависимости термодинамического свойства от какого-либо параметра, при этом средняя погрешность представленных значений заявляется в размере 3%.

Таблица 9 – Результаты вычисления термодинамических величин селенидов палладия в работе (Каржавин, 2011)

Соеди-	$-\Delta H^{o}_{f,298},$	$-\Delta G^{o}_{f,298},$	S°298,	C _{p298} ,	$C_p =$	$a + b \cdot T +$	c · T ⁻³
Нения	кДж∙моль⁻¹	кДж∙моль⁻¹	Дж·моль-1·К-1	Дж·моль-1·К-1	а	b	$-c \cdot 10^{5}$
PdSe	52.7833	50.7881	73.2785	49.891	45.075	16.019	-0.037
PdSe ₂	62.9282	59.6215	111.0117	74.879	67.603	24.128	-0.077

Экспериментально полученные термодинамические свойства известны только для соединения Pd₄Se:

 $C_p^{o}(\text{Pd}_4\text{Se}, \kappa p, 298.15 \text{ K}) = (137.0 \pm 2.0) \ \text{Дж · моль}^{-1} \cdot \text{K}^{-1} \ \text{(Olin et al., 2005)} \ \text{и}$

S°(Pd₄Se, кр, 298.15 K) = (200.1 ± 3.0) Дж·моль⁻¹·K⁻¹ (Olin et al., 2005).

1.1.7 Система Pd-Te

Фазовые отношения в данной системе довольно непростые, и их сложность возрастает с повышением температуры (Рисунок 9). Присутствует большое количество соединений, большинство из которых имеет область гомогенности. Нас интересуют теллуриды Pd₁₇Te₄, Pd₂₀Te₇, Pd₉Te₄, Pd₇Te₃, Pd₃Te₂, PdTe и PdTe₂.

Теллуриды палладия были экспериментально исследованы в работах (Medvedeva et al., 1961), (Kim, 1986), (Kim et al., 1990), (Chattopadhyay et al., 1986), (Ipser and Schuster, 1986), (Kelm et al., 1990) и (Vymazalová and Drábek, 2010), однако всё ещё нет ясности со стабильностью и стехиометрией богатых палладием соединений (20–30 ат.% Те). Благодаря медленной кинетике, химической схожести $Pd_{20}Te_7$ и Pd_8Te_3 , Pd_7Te_3 и Pd_9Te_4 , а также наслоениям в линиях рентгеновской дифракции существование этих соединений было под вопросом в некоторых статьях.

В обзоре системы, представленном в (Okamoto, 1992), идентификация фазы Pd₁₇Te₄ описана как весьма неоднозначная, однако соединение Pd₁₇Te₄ (Kim, 1986; Kim et al., 1990) фактически является фазой Pd₁₃Te₃, обнаруженной в работе (Janetzky and Harbecht, 2006), в которой также была определена её кристаллическая структура.

Существование ромбоэдрического $Pd_{20}Te_7$ было предложено в статье (Wopersnow and Schubert, 1977) и подтверждено (Kim, 1986; Ipser and Schuster, 1986).

Рd₉Te₄ был обнаружен в работе (Matkovic and Schubert, 1978). В статьях (Ipser and Schuster, 1986) и (Kim, 1986) предполагается перитектическое плавление соединения при 605 °C. Температура эвтектоидного распада составляет примерно 472 °C (как среднее между различными данными).

Стехиометрическая формула Pd_7Te_3 была принята в работе (Kim, 1986), где была описана моноклинная структура данного соединения, стабильного при температуре ниже 470 °C. Сообщается о области гомогенности у данной фазы, так по данным (Kim, 1986) она составляет 29–30 ат.% Те, в статье (Ipser and Schuster, 1986) говорится о диапазоне 28.6–30 ат.% Те и температуре устойчивости 495 °C.

 Pd_3Te_2 обнаружено в (EI-Boragy and Schubert, 1971). По данным (Ipser and Schuster, 1986) и (Chattopadhyay et al., 1986) при 507 °С соединение разлагается по перитектической реакции на расплав и PdTe.

РdТе имеет область гомогенности и по данным (Ipser and Schuster, 1986) конгруэнтно плавится при 746 °C с составом 55.0 ат.% Те.

По наиболее поздним данным (Ipser and Schuster, 1986) температура плавления PdTe₂ составляет 752 °C, а также при 730 °C и составе 59.5 ат.% Те существует эвтектическая точка Расплав \leftrightarrow PdTe + PdTe₂. В некоторых работах было предположено, что при высоких температурах PdTe и PdTe₂ образуют непрерывный ряд твёрдых растворов, однако это не было доказано и требует дополнительных исследований. Известные кристаллические структуры селенидов палладия сведены в таблицу 10.

Фаза	Структура	Пространственная группа	Ссылка
Pd _{3-x} Te	гексагональная	R3	(Cabri et al., 1979)
0.14 < x < 0.43			
PdTe	гексагональная	P6 ₃ /mmc	(Genkin et al., 1963)
Pd ₁₃ Te ₃	кубическая	Fd3m	(Janetzky and Harbecht, 2006)
$Pd_{20}Te_7$	ромбоэдрическая	R3	(Wopersnow and Schubert, 1977)
Pd9Te4	моноклинная	$P2_1/c$	(Matkovic and Schubert, 1978)
Pd ₇ Te ₃	моноклинная		(Kim, 1986), (Kim et al., 1990)
Pd ₃ Te ₂	орторомбическая	Cmcm	(Matkovic and Schubert, 1977)
PdTe ₂	гексагональная	P3m1	(Groeneveldand Meijer, 1955)

Таблица 10 – Кристаллическая структура фаз в системе Pd-Te

В справочнике (Mills, 1974) приводятся стандартные энтальпии и энтропии образования для монотеллурида и дителлурида палладия (таблица 11), энтропии образования взяты из экспериментальных работ (Gronvold et al., 1961) и (Westrum et al., 1961), тогда как величины энтальпий являются расчётными и имеют большую погрешность (±20920 Дж·моль⁻¹). В более позднем справочнике термодинамических данных (Barin, 1995) приводятся термохимические свойства только для монотеллурида палладия, при этом автор также ссылается на справочник (Mills, 1974).

Соединен	$\Delta_{\rm f} G^{\rm o}$	$\Delta_{\rm f} {\rm H}^{\rm o}$	So	Ссылка
ие	Дж·моль-1	Дж·моль-1	Дж·моль-1·К-1	
PdTe	-38342			(Barin, 1995)
		-37656 ± 20920		(Mills, 1974)
			89.621	(Gronvold et al., 1961)
		-51930 ± 490		(Stolyarova and
				Osadchii, 2013)
	-36780.9	-36131.7	89.5120	(Каржавин, 2011)
		-138000 ± 30000		(Eichler and Rossbach,
				1990)
PdTe ₂		-41840 ± 20920		(Mills, 1974)
			126.566	(Westrum et al., 1961)
		-75750 ± 680		(Stolyarova and
				Osadchii, 2011)
	-47364.4	-50394.9	126.6661	(Каржавин, 2011)
		-150000 ± 45000		(Eichler and Rossbach,
				1990)

Таблица 11 – Термодинамические свойства теллуридов палладия при 298.15 К и 1 бар

В работах (Stolyarova and Osadchii, 2011) и (Stolyarova and Osadchii, 2013) калориметрически определены энтальпии образования PdTe и PdTe₂, соответственно. В работе (Stolyarova and Osadchii, 2011) в качестве подтверждения полученных данных приводится расчёт стандартных термодинамических свойств PdTe₂ из экспериментальных данных, полученных ЭДС-методом в работе (Mallika and Sreedharan, 1986), и справочных данных для PdTe (Barin, 1995). Однако, как сказано выше, значение энтальпии образования монотеллурида палладия из справочника (Barin, 1995) является расчётным и имеет очень малую точность.

В работе (Eichler and Rossbach, 1990) приводятся величины энтальпии образования моно- и дителлурида палладия, рассчитанные на основе модели Miedema, точность которых также невелика. Авторы пишут, что точность расчета

достаточна для получения как минимум качественной информации, необходимой для решения практических проблем, но, как видно из таблицы 11, рассчитанные значения сильно отличаются от литературных данных.

В статье (Каржавин, 2011) расчёт величин термодинамических функций халькогенидов платины и палладия проводится методом определения линейной зависимости энтальпии или энтропии образования от какого-либо параметра. Приведённые в ней расчётные термодинамические величины для PdTe₂ и PdTe основаны на опубликованных справочных данных.

1.2 Трёхкомпонентные соединения

В литературе описываются тройные соединения, входящие в состав исследуемых систем, которые были найдены в природе. Это минералы:

- кравцовит-Ag2PdS (Vymazalová et al., 2017): имеет орторомбическую кристаллическую структуру с пространственной группой Стет и параметрами ячейки a = 7.983, b = 5.926, и с = 5.745 Å (Vymazalová et al., 2017); соединение изоструктурно с K₂AuBi, формирует зигзагообразные цепи [S-Pd-S-Pd], стабильно до 507 °C; кравцовит был обнаружен в одном образце с недавно описанными минералами талхаммерит (Pd₉Ag₂Bi₂S₄ (Vymazalová et al., 2018)) и вымазаловаит (Pd₃Bi₂S₂ (Sluzhenikin et al., 2018)), который принадлежал пиритной халькопирит-галенитовой руде, характеризующейся отсутствием минералов Ni, высоким содержанием галенита и минералами, несущими Pt-Pd Ag, в ассоциации пирита и халькопирита (Талнахское месторождение, Норильский район, (Sluzhenikin and Mokhov 2015); кравцовит также был найден в Cu-Pd месторождении (Марафон, Канада (Ames et al., 2017);
- колдвеллит-Ag₂Pd₃S: соединение стабильно до 940 °C (Raub et al. 1954); в работе (El-Boragy and Schubert, 1971) соединению "AgPd₂S" приписывается структура типа β-Mn, однако данное соединение, синтезированное при 550 °C, по факту является Ag₂Pd₃S; колдвеллит (пространственная группа P4₃32, параметр ячейки а = 7.2470(8) Å) был открыт в месторождении Марафон,

комплекс Колдвел, Онтарио в Канаде и полностью охарактеризован в работе (McDonald et al., 2015);

- кристанлеит-Ag₂Pd₃Se₄ (Paar et al., 1998): пространственная группа симметрии P2₁, a = 6.350(6), b = 10.387(4), c = 5.683(3), β = 114.90(5)°, Z = 2; был найден в кальцитовых жилах в известняках Хоупс Ноуз, Торквей (Девон, Англия) в ассоциации с самородным золотом, фишессеритом (Ag₃AuSe₂), клаусталитом (PbSe), эвкайритом (AgCuSe), умангитом (Cu₃Se₂) и др. (Mandarino, 1999);
- 4. сопчеит-Аg₄Pd₃Te₄ (Orsoev et al., 1982): имеет орторомбическую кристаллическую решётку с параметрами ячейки а = 9.645 Å, b = 7.906 Å, c = 11.040 Å, стабилен при температурах ниже 383 °C; встречается в природе в ассоциации с гесситом (Ag₂Te) и котульскитом (PdTe) (Мончегорский магматический комплекс, Кольский полуостров (Grokhovskaya et al., 2003) и др.); кристаллическая структура синтетического сопчеита (орторомбическая кристаллическая ячейка, пространственная группа Стса, параметры ячейки а = 12.2226(8), b = 6.1480(4) и c = 12.2398(8) Å) была определена в работе (Laufek et al., 2013);
- 5. луккулаисваараит-Ag₂Pd₁₄Te₉ (Vymazalová et al., 2014): имеет тетрагональную кристаллическую решётку с пространственной группой I4/m, и параметрами ячейки a = 8.9599(6) и c = 11.822(1) Å; в природе может быть обнаружен в ассоциации с теларгпалитом (Ag_{1-x}Pd_{2-x}Te) и котульскитом (PdTe) (Grokhovskaya et al., 1992; Barkov et al., 2001; Vymazalová et al., 2014);
- 6. теларгпалит-(Ag,Pd)₃Te (Kovalenker et al., 1974): кристаллическая структура на данный момент не определена, предположительно имеет параметр ячейки а = 12.60(2) Å; минерал обнаружили в Норильском Cu-Ni месторождении и предложили формулу (Pd,Ag,Bi,Pb)_{4+x}Te, природный минерал из массива Луккулаисваара (Карелия) также содержал Bi и Pb согласно (Бегизов и Баташев, 1978; Grokhovskaya et al., 1992) и имел соотношение (Pd + Ag):(Te + Bi + Pb) ≈ 3; в более поздней работе Barkov et

al. (2001) предложена формула Pd_{2-x}Ag_{1+x}Te, где x изменяется от 0.09 до 0.22 (от 26 до 29 масс.% Ag).

Исследования же самих фазовых отношений в тройных системах отсутствуют.

1.3 Заключение

Исходя из рассмотренных литературных данных, можно сделать вывод, что фазовые отношения в тройных системах будут усложняться при смене халькогена от серы к теллуру. Так система Ag-Pd-Te будет заведомо сложнее. Количество соединений в ней будет ожидаемо большим, по сравнению с системами Ag-Pd-S и Ag-Pd-Se, так как и система Ag-Te содержит больше соединений и количество теллуридов палладия также велико, а области их гомогенности полностью не определены.

Анализ термодинамических свойств соединений рассматриваемых систем говорит о том, что при исследовании термодинамики геологически важных равновесий, будет невозможно получить стандартные энергии образования отдельных соединений, так как для халькогенидов палладия отсутствует достаточный набор термодинамических данных. Однако из экспериментальных данных измерений ЭДС равновесий с участием синтетических минералов может быть получена зависимость фугитивности летучего компонента (S₂(gas), Se₂(gas), Te₂(gas)) над равновесиями с участием данных соединений. Подобные зависимости также являются информативными для описания минеральных равновесий.

Глава 2. Методика исследования фазовых отношений и синтеза новых соединений

При экспериментальном изучении трёхкомпонентных систем за основу брали литературные данные по краевым двухкомпонентным фазовым диаграммам. Данные по фазовым отношениям в бинарных системах изучались многими авторами и были подвергнуты критическому анализу и систематизированы в работах (Karakaya and Tompson, 1988), (Sharma and Cheng, 1986), (Massalski, 1992), (Karakaya and Tompson, 1991), (Voronin et al., 2017) и (Okamoto, 1992). Однако некоторые несоответствия наших данных и литературных были обнаружены в системе Pd-Te и они будут описаны в главе по системе Ag-Pd-Te.

Фазовые отношения исследовали путем идентификации продуктов закалочных экспериментов. По анализу фазового состава и состава фаз строили изотермические сечения фазовых диаграмм.

Хорошо известно, что для изучения фазовых отношений используется «метод подхода с нескольких сторон». В данном случае в качестве исходных веществ используются различные соединения контрастного состава. В нашей работе мы не располагали большими объемами заранее синтезированных соединений, поэтому все фазовые ассоциации синтезировали в основном из элементов. Для того чтобы система приходила к равновесию из разных точек, иногда мы получали высокотемпературную смесь элементов с помощью нагрева при температуре примерно 850 °C в течение нескольких дней. Полученную смесь далее перетирали и уже потом отжигали при изучаемой температуре.

Эксперименты проводили при трех температурах: 530 °C, 430 °C и 350 °C. Верхняя температура выбрана, исходя из того, что при температурах выше появляются зоны расплава и широкие твердые растворы, которые не закаливаются при охлаждении. Нижняя температура лимитируется кинетикой протекания реакций.

Обычно принимали, что система достигла равновесия, когда в продуктах синтеза присутствовало максимум три фазы, и каждая фаза имела одинаковый

состав по всему объему. В случаях, когда это было возможно, использовали описанный выше «метод подхода с нескольких сторон».

В начале исследования синтезировали двухкомпонентные соединения, которые, исходя из краевых фазовых диаграмм, будут стабильными при изучаемых условиях. Рентгенограммы данных соединений также использовали при идентификации продуктов синтеза.

Затем на черновую трёхкомпонентную фазовую диаграмму (треугольник Гиббса-Розебома) наносили известные соединения (двух- и трёхкомпонентные) и, исходя из предполагаемых фазовых отношений, выбирали точки — составы закалочных экспериментов. Далее эксперименты с различными составами проводили до тех пор, пока не будут подтверждены все возможные ассоциации.

Согласно правилу фаз Гиббса, в трёхкомпонентной системе при постоянных температуре и давлении в равновесии могут находиться максимально три фазы. Наличие в продуктах эксперимента более трёх фаз будет говорить о неравновесности данной ассоциации. Соответственно области трёхфазного равновесия будут отображаться на фазовой диаграмме в виде треугольника с вершинами в тех самых фазах. Если анализ показал наличие только двух фаз в продуктах, значит, состав эксперимента попал в область двухфазного равновесия (находится на конноде), или в полученном равновесии хотя бы одно из соединений имеет область гомогенности. Такое равновесие будет отображаться на фазовой диаграмме линией.

2.1 Синтез образцов

В качестве реактивов использовали: серебро пудра EASAR Jonson Mattey Co. (99.999%), палладий ПдАП-0 (99.98%, 100 µm), серебряная стружка (99.999%), сера Лабтех ос.ч (99,999%), селен кристаллический (99.9995%), очищенный зонной плавкой и теллур кристаллический (99.9995%), очищенный зонной плавкой.

Все изучаемые ассоциации получены методом «сухого» синтеза (Kullerud, 1963) в вакуумированных (~10⁻⁴ бар) ампулах из кварцевого стекла. Для исключения потери реагентов в виде паровой фазы, свободное место в ампулах

было заполнено кварцевым цилиндром с диаметром чуть меньшим внутреннего диаметра ампулы. Поверх цилиндра отверстие затыкали отожжённой каолиновой ватой для избегания попадания в продукты отжига частичек кварца при вскрытии ампулы. Навески составляли от 100 до 200 мг.

Одну группа закалочных экспериментов проводили неделю при температуре 750 °C и далее отжигали при 430 °C в течение 2 месяцев с одним промежуточным перетиранием в ступке и периодическим визуальным контролем протекания реакции. Другую группу экспериментов, после предварительного плавления при 750 °C, отжигали при 530 °C. Третья группа образцов отжигалась чешскими коллегами при температуре 350 °C по аналогичной методике. При изучении системы Ag-Pd-S вначале температуру повышали медленно до 300 °C, пока не прореагирует вся сера, и только затем температуру повышали до 750-850 °C. Это делалось, чтобы исключить резкий переход серы в газообразное состояние и возможный взрыв ампул.

Температурную экспозицию проводили в горизонтальных трубчатых печах сопротивления (Рисунок 10) с точностью контроля температуры ±0.1 °C в течение 5–60 суток для каждого из этапов. Закаливание результатов экспериментов производили путём помещения ампул после отжига в холодную воду.

Рисунок 10 – Печи для синтеза веществ

Установленные новые соединения в необходимом количестве синтезировали из элементов аналогичным образом.

2.2 Анализ продуктов синтеза

Анализ продуктов опытов выполняли параллельно двумя методами. Фазовый состав эксперимента определяли посредством рентгенофазового анализа при помощи дифрактометра BrukerD8 Advance (CuKα излучение, 40 кB на 40 мA, графитовый монохроматор) в диапазоне от 10 до 145° 2Θ°.

Для проведения рентгенофазового анализа образец перетирали в агатовой ступке до состояния порошка. По результатам порошковой рентгенограммы, используя базу данных PCPDFWIN, определяли фазы, находящиеся в равновесии в условиях эксперимента.

Состав фаз и их количество определяли с помощью рентгеноспектрального микроанализа на электронном микроскопе TescanVegaII с энергодисперсионной приставкой INCA Energy 450 с ускоряющим напряжением электронного пучка 15 и 20 кВ. Процентный элементный состав фаз определяли, используя излучение $AgL\beta$, $PdL\alpha$, $SK\alpha$, $SeL\alpha$ и $TeL\alpha$, как усреднённое значение минимум пяти измерений в различных точках и зёрнах. Точность измерения могла быть ниже заявленной методом (1-2%) из-за размера фаз и неидеальной полировки. Пример микрофотографии приведён на рисунке 11.

Рисунок 11 – Растровая фотография трехфазной ассоциации исходного состава (ат.%) Ag 20, Pd 40, S 40

Для оптической микроскопии и рентгеноспектрального микроанализа изготавливали и затем полировали шашки в матрице из эпоксидной смолы.

Состав серебро-палладиевого сплава также определяли по величине параметра решетки по предложенной нами формуле (1):

$$x(\text{Dss}) = 4451.1 - 100 \cdot \sqrt{1.1854 - 2.79056 \cdot \text{Dss}} - 10373.4 \cdot \text{Dss}$$
(1)

где x — состав сплава (ат.% Pd), а *Dss* — параметр решетки сплава, рассчитанный из рентгенограммы в нанометрах (Приложение 1). Точность метода оценивается в 1 ат.%.
Глава 3. Фазовые отношения в системах Ag-Pd-халькоген

3.1 Система Ag-Pd-S

Система Ag-Pd-S была изучена при 530 °C, 430 °C и давлении собственного пара. Выбор температур объясняется тем, что большинство соединений в краевых диаграммах стабильны при данных температурах.

Фазовые ассоциации, полученные при идентификации результатов изотермического отжига закалочных экспериментов в данной системе, представлены в таблицах 12 и 13.

Таблица 12 – Состав эксперимента (ат.%) и результаты анализа продуктов реакции при 530 °С

Ag	Pd	S	Acc	оциации		
25	25	50	Ag ₂ S	PdS ₂	PdS	
20	40	40	Ag ₂ S	PdS	Ag_2Pd_3S	
40	30	30	Ag ₂ S	PdS	Ag_2Pd_3S	
25	50	25	Ag ₂ Pd ₃ S	PdS		
40	40	20	Ag_2Pd_3S	Ag_2S		
50	25	25	Pd_3Ag_2S	Ag_2S	PdS	
33	50	17	Ag_2Pd_3S			
20	60	20	Ag_2Pd_3S	$Pd_{16}S_7$	Pd ₄ S	
60	25	15	Ag ₂ S	Ag ₂ Pd ₃ S	Ag-Pd сплав	
15	70	15	Ag_2Pd_3S	Pd4S	Ag-Pd сплав	
15	65	20	Ag ₂ Pd ₃ S	$Pd_{16}S_7$	Pd ₄ S	

Ag	Pd	S	Ассоциации				
25	25	50	Ag ₂ S	PdS ₂	PdS		
20	40	40	Ag ₂ PdS	PdS			
40	30	30	Ag ₂ PdS	PdS			
25	50	25	Ag ₂ Pd ₃ S	PdS			
40	40	20	Ag ₂ PdS	Ag ₂ Pd ₃ S			
15	15	70	Ag_2S	PdS ₂	S		
50	25	25	Ag ₂ PdS				
33	50	17	Ag_2Pd_3S				
20	60	20	Ag ₂ Pd ₃ S	$Pd_{16}S_7$	$Ag_3Pd_{13}S_4$		
60	25	15	Ag ₂ PdS	Ag ₂ Pd ₃ S	Ag-Pd сплав		
15	70	15	Ag_2Pd_3S	Pd ₄ S	Ag-Pd сплав		
15	65	20	$Pd_{16}S_7$	Ag ₃ Pd ₁₃ S ₄	Ag ₂ Pd ₃ S		

Таблица 13 – Состав эксперимента (ат.%) и результаты анализа продуктов реакции при 430 $^{\circ}\mathrm{C}$

В таблице 14 приведены данные рентгеноспектрального микроанализа элементного состава для всех соединений изучаемой системы. Из них можно сделать выводы, что некоторые сульфиды палладия могут растворять в себе небольшое количество серебра, так соединение Pd₄S растворяет в себе до 2.7 вес.% Ag, а в соединении Pd₁₆S₇ было обнаружен 1.3 вес.% Ag. В остальных двухкомпонентных соединениях заметного содержания третьего компонента не обнаружено. Данные по составу трёхкомпонентных соединений позволяют утверждать, что данные соединения можно считать стехиометричными (в рамках погрешности метода определения). Согласно данным рентгенофазового анализа, высокотемпературная модификация Ag₂S с кубической кристаллической решёткой аргентит) (аналог минерала не закаливается, переходя обратно В низкотемпературную форму с моноклинной кристаллической решёткой (аналог минерала акантит).

Фаза	№ экспери-		Весовн	ые %		Мольн	oe coot	ношение
	мента	Ag	Pd	S	Сумма	Ag	Pd	S
Pd ₄ S	S1	0	93.47	6.31	99.78	0	4.08	0.92
	S2	0	90.77	8.97	99.73	0	4.09	0.91
	S17	2.69	89.39	6.59	98.67	0.12	3.92	0.96
	S18	0.14	92.93	6.63	99.69	0.01	4.04	0.96
Pd ₃ S	S2	0.34	90.91	9.25	100.50	0.01	2.98	1.01
$Pd_{16}S_7$	S2	0	88.94	10.77	99.71	0	16.41	6.59
	S3	0	88.77	10.84	99.61	0	16.37	6.63
	S4	0	88.93	10.63	99.55	0	16.47	6.53
	S15	1.31	87.00	11.46	99.77	0.23	15.84	6.92
PdS	S4	0	77.58	21.71	99.29	0	1.04	0.96
	S5	0	77.59	22.01	99.60	0	1.03	0.97
	S7	0.28	77.33	22.65	100.27	0	1.01	0.98
	S8	0.06	77.27	22.64	99.98	0	1.01	0.99
	S9	0.84	77.10	21.76	99.69	0.01	1.03	0.96
	S10	0.00	77.83	22.16	99.99	0	1.03	0.97
PdS ₂	S7	0.20	62.90	36.11	99.21	0	1.03	1.97
Ag_2S	S6	85.45	0	13.64	99.09	1.95	0	1.05
	S7	85.24	0.01	13.99	99.25	1.93	0	1.07
Ag ₂ PdS	S8	60.42	30.91	8.83	100.16	1.99	1.03	0.98
	S9	60.69	31.18	8.83	100.70	1.99	1.04	0.97
	S10	60.33	31.48	8.69	100.50	1.99	1.05	0.96
	S11	59.88	31.49	8.79	100.16	1.97	1.05	0.97
	S13	60.42	30.98	8.70	100.11	2.00	1.04	0.97
	S16	59.97	30.44	8.92	99.34	1.98	1.02	0.99
Ag_2Pd_3S	S9	38.42	57.06	5.50	100.98	2.01	3.02	0.97
	S11	38.20	56.98	5.33	100.52	2.01	3.04	0.94

Таблица 14 – Данные рентгеноспектрального микроанализа

	S14	37.55	57.13	5.29	99.97	1.99	3.07	0.94
	S15	36.73	57.33	5.56	99.62	1.94	3.07	0.99
	S17	34.72	58.80	5.54	99.06	1.84	3.17	0.99
	S16	37.81	56.02	5.46	99.29	2.01	3.02	0.98
	S18	37.10	58.34	5.43	100.87	1.94	3.10	0.96
$Ag_3Pd_{13}S_4$	S15	17.54	75.16	6.94	99.65	3.00	13.01	3.99
	S18	17.16	76.07	6.62	99.85	2.94	13.23	3.82
Ag-Pd сплав	S17	32.07	67.42	0.06	99.55	0.64	1.36	0.00
	S16	88.56	11.03	0.17	99.76	1.77	0.22	0.01

Фазовая диаграмма системы Ag-Pd-S при температуре 530 °C, построенная по результатам исследования, представлена на рисунке 12.

40

Рисунок 12 – Фазовая диаграмма системы Ag-Pd-S при 530 °C и давлении собственного пара

При данной температуре в системе обнаружено одно тройное соединение Ag_2Pd_3S — аналог минерала колдвеллит, которое находится в равновесии со всеми фазами тройной системы, за исключением PdS_2 . Данные P Φ A соединения Ag_2Pd_3S соответствуют данным по кристаллической структуре природного Ag_2Pd_3S , описанного в работе (McDonald et al., 2015).

На фазовой диаграмме пунктирной линией изображено равновесие, которое при данной температуре не является устойчивым, однако соединение PdS₂ было обнаружено в некоторых образцах. Видимо, температура его устойчивости находится в непосредственной близости к 530 °C.

Составы серебро-палладиевых сплавов, входящих в тройные равновесия, составили 89 ат.% Аg и 8 ат.% Аg. Трёхфазные ассоциации, определённые при 530 °C в данной системе, приведены ниже:

 $S + PdS + Ag_2S;$

 $PdS + Ag_2Pd_3S + Ag_2S;$

 $Ag_2S + Ag_2Pd_3S + (Ag, Pd)$ сплав;

 $PdS + Pd_{16}S_7 + Ag_2Pd_3S;$

 $Pd_{16}S_7 + Pd_3S + Ag_2Pd_3S;$

 $Pd_3S + Pd_4S + Ag_2Pd_3S;$

 $Pd_4S + Ag_2Pd_3S + (Ag, Pd)$ сплав.

При 430 °C (Рисунок 13) в системе появляются еще два тройных соединения: Ag₂PdS (аналог минерала кравцовит) и Ag₃Pd₁₃S₄.

Рисунок 13 – Фазовая диаграмма системы Ag-Pd-S при 430 °C и давлении собственного пара

Было определено, что Ag₂PdS может находиться в равновесии с Ag₂S и PdS; PdS и Ag₂Pd₃S; Ag₂Pd₃S и (Ag-Pd) сплавом; (Ag, Pd) сплавом и Ag₂S.

Соединение $Ag_3Pd_{13}S_4$ получено впервые. Данное соединение может быть в ассоциации с Ag_2Pd_3S и $Pd_{16}S_7$; $Pd_{16}S_7$ и Pd_4S ; Pd_4S и Ag_2Pd_3S .

Кроме того, на данной изотерме (Рисунок 13) исчезает соединение Pd₃S, что соответствует фазовой диаграмме Pd-S (Okamoto, 1992).

Серебро-палладиевые сплавы, входящие в тройные равновесия, имеют составы — 91 ат.% Ад и 7 ат.% Ад. Трёхфазные ассоциации, полученные при 430 °C, приведены ниже:

 $S + PdS_2 + Ag_2S;$

 $PdS_2 + PdS + Ag_2S;$

 $PdS + Ag_2PdS + Ag_2S;$

 $PdS + Ag_2Pd_3S + Ag_2PdS;$

 $PdS + Pd_{16}S_7 + Ag_2Pd_3S;$

 $Pd_{16}S_7 + Ag_3Pd_{13}S_4 + Ag_2Pd_3S;$

 $Pd_{16}S_7 + Pd_4S + Ag_3Pd_{13}S_4;$

 $Ag_3Pd_{13}S_4 + Pd_4S + Ag_2Pd_3S;$

 $Pd_4S + Ag_2Pd_3S + (Ag, Pd)$ сплав;

 $Ag_2S + Ag_2PdS + (Ag, Pd)$ сплав;

 $Ag_2PdS + Ag_2Pd_3S + (Ag, Pd)$ сплав.

Исходя из полученных данных, можно предположить, что при понижении температуры от 530 °C до 430 °C в данной системе происходят следующие фазовые реакции:

из смеси фаз Ag₂S + PdS + Ag₂Pd₃S по перитектоидной реации образуется Ag₂PdS; из смеси фаз Ag₂Pd₃S + Pd₃S + Pd₄S образуется Ag₃Pd₁₃S₄.

Полученные фазовые отношения подтверждают стабильные минеральные ассоциации, обнаруженные в природе, а значит, и могут предсказать ассоциации ранее неизвестной фазы с минералами.

Эти данные были опубликованы в статье (Vymazalová et al., 2020 A), также в ней более подробно рассмотрены геологические аспекты изучения данной системы.

3.2 Система Ag-Pd-Se

Фазовые отношения в системе были изучены при температурах 530 °С и 430 °С, так как большинство соединений в краевых диаграммах стабильны при данных температурах.

В таблице 15 приведены равновесия, определённые в закалочных экспериментах в зависимости от состава эксперимента и температуры отжига.

№ экспери- мента	Состав, ат. %	°C	Температура,	Фазовые ассоциации
A9	Ag22.2Pd33.3Se44.4		430	$Ag_2Se, Pd_{17}Se_{15}, PdSe_2$
			530	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
A10	Ag40Pd40Se20		430	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd сплав
			530	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd сплав
A11	Ag20Pd55Se25		430	$(Ag,Pd)_{22}Se_6, AgPd_3Se, Pd_{17}Se_{15}$
			530	AgPd ₃ Se, (Ag,Pd) ₂₂ Se ₆ , L (Pd,Se)
A12	Ag20Pd30Se50		430	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
			530	Ag_2Se , $Pd_{17}Se_{15}$, $PdSe_2$
A13	Ag30Pd40Se30		430	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
			530	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}$
A14	Ag33.3Pd25Se41.7		430	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
			530	$Ag_2Se, Pd_{17}Se_{15}, PdSe_2$
A15	Ag20Pd40Se40		430	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
			530	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
A16	Ag20Pd20Se60		430	Sel, Ag ₂ Se, PdSe ₂
			530	Sel, Ag ₂ Se, PdSe ₂
A17	Ag6Pd47Se47		430	$Pd_{17}Se_{15}$, $PdSe_2$
			530	$Pd_{17}Se_{15}$, $PdSe_2$
A18	Ag22.5Pd34Se43.5		430	Ag_2Se , $Pd_{17}Se_{15}$, $PdSe_2$
			530	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
A19	Ag20Pd60Se20		430	AgPd ₃ Se

Таблица 15 – Результаты экспериментов в системе Ag-Pd-Se

		530	AgPd ₃ Se
A20	Ag60Pd20Se20	430	(Ag,Pd) ₂₂ Se ₆ , Ag ₂ Se, Ag-Pd сплав
		530	(Ag,Pd) ₂₂ Se ₆ , Ag ₂ Se, Ag-Pd сплав
A21	Ag30Pd50Se20	430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
		530	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
A22	Ag20Pd50Se30	430	$(Ag,Pd)_{22}Se_6$, $AgPd_3Se$, $Pd_{17}Se_{15}$
		530	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, L$
A23	Ag10Pd60Se30	430	AgPd ₃ Se, Pd ₁₇ Se ₁₅ , L
		530	AgPd ₃ Se, Pd ₁₇ Se ₁₅ , L
A24	Ag25Pd45Se30	430	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}$
		530	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}$
A25	Ag7Pd70Se23	430	AgPd ₃ Se, Pd ₇ Se ₂ , L
		530	AgPd ₃ Se, Pd ₇ Se ₂ , L
A26	Ag15Pd70Se15	430	AgPd ₃ Se, Ag ₆ Pd ₇₄ Se ₂₀ , Ag-Pd сплав
		530	AgPd ₃ Se, Ag ₆ Pd ₇₄ Se ₂₀ , Ag-Pd сплав
A27	Ag40Pd45Se15	430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Ag-Pd сплав
		530	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Ag-Pd сплав
A28	Ag7Pd73Se20	430	AgPd ₃ Se, Pd ₇ Se ₂
		530	AgPd ₃ Se, Pd ₇ Se ₂
A29	Ag2Pd45Se53	430	$PdSe_2, Pd_{17}Se_{15}$
		530	PdSe ₂ , Pd ₁₇ Se ₁₅
A30	Ag55Pd30Se15	430	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd сплав
		530	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd сплав
A31	Ag2Pd56Se42	430	$Pd_{17}Se_{15}, L$
		530	$Pd_{17}Se_{15}, L$

A32	Ag33Pd46Se21	430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
		530	$(Ag,Pd)_{22}Se_6, AgPd_3Se$
A33	Ag1Pd51Se48	430	$Pd_{17}Se_{15}$, $PdSe$
		530	$Pd_{17}Se_{15}$, $PdSe$
A34	Ag6Pd73Se21	430	Ag ₆ Pd ₇₄ Se ₂₀ , следы Pd ₉ Se ₂
		530	Ag ₆ Pd ₇₄ Se ₂₀ , следы Pd ₉ Se ₂
A35	Ag33Pd33Se33	430	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se$
		530	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se$
A36	Ag50Pd20Se30	430	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se_{15}$
		530	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se$

Согласно полученным данным были подтверждены сечения краевых фазовых диаграмм, а также было обнаружено три новых тройных соединения: AgPd₃Se, (Ag,Pd)₂₂Se₆ и Ag₆Pd₇₄Se₂₀.

В Приложении 2 приведены результаты рентгеноспектрального микроанализа закалочных экспериментов. Исходя из них, было получено, что соединение AgPd₃Se образует ряд твердых растворов Ag_{1-x}Pd_{3+x}Se (x = 0–0.15). Соединение (Ag,Pd)₂₂Se₆ также образует ряд твердых растворов (Ag_{11±x}Pd_{11±x})₂₂Se₆ ($0.2 \ge x \ge 3.9$) с постоянным отношением Ag+Pd к Se, растворимость Ag уменьшается с увеличением температуры. Pd₁₇Se₁₅ (аналог минерала палладсеит) образует ограниченный твердый раствор и растворяет до 7 вес.% Ag, также соединение Pd₉Se₂ растворяет до 3 вес.% Ag. Остальные двухкомпонентные соединения не содержат в себе третий компонент в заметных количествах.

Фазовая диаграмма системы Ag-Pd-Se при температуре 530 °C, построенная по результатам исследования, представлена на рисунке 14.

46

Рисунок 14 – Фазовая диаграмма системы Ag-Pd-Se при 530 °C и давлении собственного пара

При данной температуре в системе было обнаружено три ранее не известных тройных соединения, два из которых имеют область гомогенности. Соединение $(Ag,Pd)_{22}Se_6$ при 530 °C имеет диапазон по соотношению серебра и палладия при постоянном содержании селена от 49 до 35 ат.% Ag, в соединении AgPd₃Se состав меняется от 21 до 17 ат.% Ag. У соединения Ag₆Pd₇₄Se₂₀ область гомогенности не была обнаружена. Данное соединение распадается при температуре ниже 430 °C.

Кроме того, было замечено, что селениды палладия Pd₁₇Se₁₅ (аналог минерала палладсеит) и Pd₉Se₂ растворяют в себе серебро, образуя твёрдые растворы с содержанием до 7 и 5 ат.% Ад соответственно. Далее в тексте эти твердые растворы обозначаются как Pd₁₇Se₁₅ ss и Pd₉Se₂ ss (solid solution).

Также при 530 °С в системе присутствует две области эвтектического расплава L_1 и L_2 . Ширина области L_1 (от 26 до 35 ат.% Se) и точка эвтектики (658 К и 31 ат.% Se) взяты из фазовой диаграммы Pd-Se (Okamoto, 1992). Область L_2

(Рисунок 15) представляет собой тройной расплав в области составов соединений Pd₁₇Se₁₅ss-AgPd₃Se-(Ag,Pd)₂₂Se₆.

Рисунок 15 – Микрофотография продуктов закалочного эксперимента в области трёхкомпонентного эвтектического расплава

На стороне Ag-Pd точки твердых растворов, входящих в тройные равновесия имеют составы: 74 ат.% Ag, 68 ат.% Ag и 32 ат.% Ag.

Следующие трёхфазные равновесия были подтверждены:

 $Se_l + PdSe_2 + Ag_2Se;$

 $Ag_2Se + PdSe_2 + Pd_{17}Se_{15} ss;$

 $PdSe + PdSe_2 + Pd_{17}Se_{15} ss;$

 $(Ag,Pd)_{22}Se_6 ss + Pd_{17}Se_{15} ss + L_2;$

 $(Ag,Pd)_{22}Se_6 ss + AgPd_3Se ss + L_2;$

 $Pd_{17}Se_{15} ss + AgPd_3Se ss + L_2;$

 $Ag_2Se + (Ag,Pd)_{22}Se_6 ss + Pd_{17}Se_{15} ss;$

 $AgPd_3Se ss + Pd_{17}Se_{15} ss + L_1;$

 $AgPd_3Se ss + Pd_7Se_2 + L_1;$

 $AgPd_3Se ss + Pd_7Se_2 + Ag_6Pd_{74}Se_{20};$

 $Ag_6Pd_{74}Se_{20} + Pd_4Se + Pd_7Se_2;$

 $Ag_{6}Pd_{74}Se_{20} + Pd_{4}Se + Pd_{9}Se_{2} ss;$

Ag₆Pd₇₄Se₂₀ + Pd₉Se₂ ss + (Ag,Pd) сплав;

 $AgPd_{3}Se ss + Ag_{6}Pd_{74}Se_{20} + (Ag,Pd)$ сплав;

 $AgPd_3Se ss + (Ag,Pd)_{22}Se_6 ss + (Ag,Pd) сплав;$

 $Ag_2Se + (Ag,Pd)_{22}Se_6 ss + (Ag,Pd) сплав;$

ss – означает твёрдый раствор.

Фазовые отношения в системе Ag-Pd-Se при 430 °C представлены на рисунке 16.

Рисунок 16 – Фазовая диаграмма системы Ag-Pd-Se при 430 °C и давлении собственного пара

Штриховой линией показано равновесие с соединением Pd₃₄Se₁₁, существующие при температуре чуть ниже 430 °C, так как при более высокой температуре соединение разлагается. В некоторых опытах это соединение присутствовало в неравновесных ассоциациях.

При 430 °C в системе также присутствуют три тройных соединения. (Ag,Pd)₂₂Se₆ при 430 °C имеет диапазон по соотношению серебра и палладия от 50 до 34 ат.% Ag, в соединении AgPd₃Se состав меняется от 20 до 16 ат.% Ag. У соединения Ag₆Pd₇₄Se₂₀ область гомогенности также не была обнаружена.

Селениды палладия Pd₁₇Se₁₅ и Pd₉Se₂ при данной температуре растворяют в себе до 6 и 2 ат.% Ад соответственно.

При 430 °C в системе присутствует только одна область эвтектического расплава L_1 (Рисунок 17), её ширина (от 28 до 33 ат.% Se) также взята из фазовой диаграммы Pd-Se (Okamoto, 1992).

На стороне Ag-Pd точки твердых растворов, входящие в тройные равновесия имеют составы: 80 ат.% Ag, 67 ат.% Ag и 42 ат.% Ag.

Рисунок 17 – Микрофотография продуктов закалочного эксперимента в области двухкомпонентного эвтектического расплава

Перечень обнаруженных ассоциаций в системе Ag-Pd-Se при 430 °C представлен ниже:

 $Se_l + PdSe_2 + Ag_2Se;$

 $Ag_2Se + PdSe_2 + Pd_{17}Se_{15} ss;$

 $PdSe + PdSe_2 + Pd_{17}Se_{15} ss;$

 $(Ag,Pd)_{22}Se_6 ss + Pd_{17}Se_{15} ss + AgPd_3Se ss;$

 $Ag_2Se + (Ag,Pd)_{22}Se_6 ss + Pd_{17}Se_{15} ss;$

 $AgPd_3Se ss + Pd_{17}Se_{15} ss + L_1;$

AgPd₃Se ss + Pd₇Se₂ + L_1 ;

 $AgPd_{3}Se\ ss+Pd_{7}Se_{2}+Ag_{6}Pd_{74}Se_{20};$

 $Ag_6Pd_{74}Se_{20} + Pd_4Se + Pd_7Se_2;$

 $Ag_6Pd_{74}Se_{20} + Pd_4Se + Pd_9Se_2 ss;$

Ag₆Pd₇₄Se₂₀ + Pd₉Se₂ ss + (Ag,Pd) сплав;

 $AgPd_3Se ss + (Ag,Pd) сплав + Ag_6Pd_{74}Se_{20};$

 $AgPd_3Se ss + (Ag,Pd)_{22}Se_6 ss + (Ag,Pd) сплав;$

 $Ag_2Se + (Ag,Pd)_{22}Se_6 ss + (Ag,Pd) сплав;$

ss – означает твёрдый раствор.

Параллельно с нами в Чешской геологической службе была построена фазовая диаграмма при 350 °С (Рисунок 18).

Рисунок 18 – Фазовая диаграмма системы Ag-Pd-Se при 430 °C и давлении собственного пара

При 350 °C в системе присутствует соединение $Ag_2Pd_3Se_4$, которое обнаружено в природе (минерал кристанлеит). Однако во всех экспериментах, включая синтез из стехиометрических составов, были получены только различные двух и трехфазные ассоциации с его участием. Однофазный кристанлеит не был получен, вероятно, по причине низкой скорости реакции. Соединение $Ag_2Pd_3Se_4$, аналог минерала кристанлеит, находится в стабильной ассоциации с Ag_2Se (науманитом) и $PdSe_2$ (вербеекитом), оно также сосуществует с $Pd_{17}Se_{15}$ (растворяющим 7 ат.% Ag). Соединение стабильно до температуры 430 °C. Фазовые отношения определяют минеральные ассоциации, нахождение которых можно ожидать в природе. Наряду с другими селенидами в ассоциации с $AgPd_3Se$ и $(Ag,Pd)_{22}Se_6$, а также двойных PdSe, Pd_7Se_4 и Pd_34Se_{11} .

Соединение $Ag_6Pd_{74}Se_{20}$ образует стабильную ассоциацию с $AgPd_3Se$ и Pd_7Se_4 . В природных условиях нахождение соединений $Ag_6Pd_{74}Se_{20}$ и Pd_9Se_2 можно ожидать в менее традиционной среде, чем для обычных селенидов, формировавшейся при высоких температурах (до 430 °C).

При охлаждении от 530 °C до 430 °C в системе Ag-Pd-Se происходят следующие фазовые реакции:

- 1. эвтектическая кристаллизация расплава L_2 в смесь $Pd_{17}Se_{15}ss + AgPd_3Se + (Ag,Pd)_{22}Se_6;$
- 2. перитектическая реакция образования $Pd_{34}Se_{11}$ из расплава L_1 и фазы Pd_7Se_2 .

При охлаждении от 430 °C до 350 °C в системе Ag-Pd-Se происходят следующие фазовые реакции:

- из смеси фаз Ag₂Se + PdSe₂ + PdSe по перитектоидной реации образуется Ag₂Pd₃Se₄;
- 2. $Ag_6Pd_{74}Se_{20}$ распадается на $AgPd_3Se$ и Pd_4Se по перитектоидной реакции.

Эти данные были опубликованы в статье (Vymazalová et al., 2014 A), также в ней более подробно рассмотрены геологические аспекты изучения данной системы.

3.3 Система Ag-Pd-Te

Для данной системы изотермические сечения фазовой диаграммы были построены при температурах 450 °C и 350 °C, так как при более высоких температурах некоторые теллуриды палладия перестают быть стабильными.

Так как фазовые отношения краевых диаграмм Pd-Te и Ag-Te сложнее рассмотренных выше систем, то более подробно были исследованы их сечения (Таблица 16).

Начальный состав, (ат.%)					
№ опыта	Pd	Ag	Te	Фазовые ассоциации при 350 °С	
			Pd-Te		
228	78		22	Pd13Te3+Pd20Te7	
258	72.72		27.27	Pd20Te7+Pd7Te3	
259	70		30	Pd ₇ Te ₃	
261	69.23		30.77	Pd9Te4	
262	33.33		66.67	PdTe ₂	
263	50		50	PdTe	
264	60		40	Pd ₃ Te ₂	
265	74.07		25.93	Pd20Te7	
266	80.98		19.05	Pd13Te3+Pd20Te7	
300	42		58	PdTe+PdTe	
301	55		45	PdTe+Pd3Te2	
302	65		35	Pd9Te4+Pd3Te2	
			Ag-Te		
4		62.5	37.5	Ag5Te3	
5		66.67	33.33	Ag2Te	
6		50	50	Ag5Te3+Te	
29		65.52	34.48	γ-Ag1.9Te	

Таблица 16 – Результаты закалочных экспериментов в ситемах Pd-Te и Ag-Te

В результате было получено, что состав с соотношением 'Pd₁₇Te₄' даёт двухфазную ассоциацию Pd₁₃Te₃ + Pd₂₀Te₇, также при 350 °C не найдена фаза Pd₈Te₃, что в согласии с фазовой диаграммой в работе Okamoto (1992). Соединение Pd₂₀Te₇ образует твёрдый раствор (от Pd_{20.11}Te_{6.86} до Pd_{19.61}Te_{7.39}) при 350 °C. Соединение Pd₇Te₃ было подтверждено при 350 °C, однако также при этой температуре была обнаружена фаза Pd₉Te₄, которая, согласно (Okamoto, 1992), должна появляться при 472 °C. Таким образом, при 350 °C в системе Pd-Te стабильны следующие соединения: Pd₁₃Te₃, Pd₂₀Te₇, Pd₇Te₃, Pd₉Te₄, Pd₃Te₂, PdTe и PdTe₂. Составы, отожженные при 350 °C, затем отжигались при 450 °C в течение месяца, их результаты не изменились по сравнению с более низкой температурой.

В системе Ag-Te при 350 °C были подтверждены соединения Ag₅Te₃, Ag₂Te и γ- Ag_{1.9}Te, соединение AgTe не обнаружено; при 450 °C соединение Ag₅Te₃ нестабильно. В таблицах 17 и 18 приведены результаты выборочных закалочных экспериментов при разных температурах отжига.

№ опыта	Начальный состав (ат.%) Ag Pd Te		Фазовые ассоциации				
9	40	30	30	Ag ₂ Te	$Ag_2Pd_{14}Te_9*$	AgPd ₂ Te	
23	17.39	73.91	8.7	Pd ₁₃ Te ₃	Ag-Pd (69 at.% Ag)		
34	12.5	56.25	31.25	Ag ₂ Pd ₁₄ Te ₉	AgPd ₂ Te	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	
35	35	45	20	$Ag_{2-x}Pd_{2+x}Te$	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Ag-Pd (17 ат.% Ag)	
36	53.66	35.77	37.4	Ag ₂ Te	Ag ₂ Pd ₁₄ Te ₉	PdTe	
37	27.5	47.5	25	AgPd ₂ Te Ag _{0.5+x} Pd _{7.5-x} Te ₃			
38	32.5	42.5	25	AgPd ₂ Te Ag ₂ Te			
41	22	56	22	$Ag_{2-x}Pd_{2+x}Te$	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Ag-Pd (17 ат.% Ag)	
42	10	68	22	Pd ₂₀ Te ₇ ss	Ag-Pd (25 at.% Ag)		
50	4	68	28	$Ag_{0.5+x}Pd_{7.5-x}Te_{3}$	Pd ₇ Te ₃		
246	80	10	10	Ag ₂ Te*	Ag-Pd*	AgPd ₂ Te *	
245	57	33	10	Ag _{2-x} Pd _{2+x} Te*	Ag _{0.5+x} Pd _{7.5-x} Te ₃ ss*	Ag-Pd*	
259	15	55	30	Ag ₂ Pd ₁₄ Te ₉	AgPd ₂ Te	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	
260	5	55	40	Ag ₂ Pd ₁₄ Te ₉	Pd ₃ Te ₂	PdTe	
270	25	25	50	Ag ₂ Te	PdTe ₂	PdTe	
271	20	40	40	Ag ₂ Te	$Ag_2Pd_{14}Te_9$	PdTe	
272	35	35	30	Ag ₂ Te	AgPd ₂ Te	Ag ₂ Pd ₁₄ Te ₉ *	

Таблица 17 – Результаты закалочных экспериментов в системе Ag-Pd- Те при 450 $^{\circ}\mathrm{C}$

273	30	30	40	Ag ₂ Te	$Ag_2Pd_{14}Te_9$	PdTe
274	5	75	20	Pd ₂₀ Te ₇ ss	Pd ₁₃ Te ₃ ss	Ag-Pd (44 ar.%Ag)
275	10	70	20	Pd ₂₀ Te ₇ ss	Pd ₁₃ Te ₃ ss*	Ag-Pd (44 ar.%Ag)

* результаты согласно данным РФА

Таблица 18 – Результаты экспериментов в системе Ag–Pd–Te при 350	°C
--	----

N⁰	Начальный состав (ат.%)		Фазовые ассоциации			
опыта	Ag	Pd	Te			
7	40	20	40	Ag ₂ Te	PdTe	
8	50	20	30	Ag ₂ Te	(Ag,Pd) ₃ Te	
9	40	30	30	Ag ₂ Te	$Ag_2Pd_{14}Te_9$	(Ag,Pd) ₃ Te
10	20	60	20	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Pd ₂₀ Te ₇	Ag-Pd
11	13	53	34	Ag ₂ Pd ₁₄ Te ₉	(Ag,Pd) ₃ Te	
12	36.36	27.27	36.36	Ag ₄ Pd ₃ Te ₄		
13	15	70	15	Pd ₂₀ Te ₇	Ag-Pd	
14	20	20	60	Ag ₅ Te ₃	PdTe ₂	Te
16	60	20	20	Ag ₂ Te	(Ag,Pd) ₃ Te	Ag-Pd
17	25	25	50	Ag ₂ Te	PdTe ₂	PdTe
18	9.09	54.55	36.36	$Ag_2Pd_{14}Te_9$	Ag ₄ Pd ₃ Te ₄	PdTe
19	30	45	25	(Ag,Pd) ₃ Te		
20	16.67	50	33.33	Ag ₂ Te	Ag ₂ Pd ₁₄ Te ₉	(Ag,Pd) ₃ Te
21	20	40	40	Ag ₄ Pd ₃ Te ₄	Ag ₂ Pd ₁₄ Te ₉	PdTe
22	31.25	50	18.75	Ag _{0.5+x} Pd _{7.5-x} Te ₃	$Ag_{2-x}Pd_{2+x}Te$	Ag-Pd
24	13.33	60	26.67	(Ag,Pd) ₃ Te	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	
25	12.9	64.52	22.58	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Pd ₂₀ Te ₇	Ag-Pd
26*	15	15	70	Ag ₅ Te ₃	PdTe ₂	Te

27	40	40	20	(Ag,Pd) ₃ Te	Ag-Pd	
28	5.66	56.6	37.74	Ag ₂ Pd ₁₄ Te ₉	Pd ₃ Te ₂	PdTe
30	10	50	40	Ag ₄ Pd ₃ Te ₄	Ag ₂ Pd ₁₄ Te ₉	PdTe
31	33.33	33.33	33.33	Ag ₂ Pd ₁₄ Te ₉	(Ag,Pd) ₃ Te	Ag ₂ Te
32	7.14	57.14	35.71	Ag ₂ Pd ₁₄ Te ₉	Pd ₉ Te ₄	
34	12.5	56.25	31.25	Ag ₂ Pd ₁₄ Te ₉	(Ag,Pd) ₃ Te	$Ag_{0.5+x}Pd_{7.5-x}Te_3$
35	35	45	20	$Ag_{2-x}Pd_{2+x}Te$		
36	53.66	35.77	37.4	Ag ₄ Pd ₃ Te ₄	Ag ₂ Pd ₁₄ Te ₉	PdTe
37	27.5	47.5	25	(Ag,Pd) ₃ Te	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	
38	32.5	42.5	25	(Pd,Ag) ₃ Te	Ag ₂ Te	Ag-Pd
39	33	45	22	(Pd,Ag) ₃ Te	$Ag_{2-x}Pd_{2+x}Te$	
40	30	48	22	(Pd,Ag) ₃ Te	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Ag _{2-x} Pd _{2+x} Te
42	10	68	22	$Pd_{20}Te_7$	Ag-Pd	
43	3	75	22	Pd ₁₇ Te ₄	Pd ₂₀ Te ₇	Ag-Pd
45	4	66	30	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Pd ₁₄ Ag ₂ Te ₉	Pd ₉ Te ₄
46	36	44	20	$Ag_{2-x}Pd_{2+x}Te$	Ag-Pd	
47	8	56	36	Ag ₂ Pd ₁₄ Te ₉		
48	12	60	28	Ag ₂ Pd ₁₄ Te ₉	(Pd,Ag) ₈ Te ₃	
49	8	64	28	$Ag_{0.5+x}Pd_{7.5-x}Te_3$		
50	4	68	28	$Ag_{0.5+x}Pd_{7.5-x}Te_3$	Pd ₉ Te ₄	Pd ₂₀ Te ₇
52	28.5	46.5	25	(Pd,Ag) ₃ Te		
53	29.5	45.5	25	(Pd,Ag) ₃ Te		
54	14	58	28	Ag2Pd14Te9	Ag _{0.5+x} Pd _{7.5-x} Te ₃	(Pd,Ag) ₃ Te
55	34	46	20	$Ag_{2-x}Pd_{2+x}Te$	Ag _{0.5+x} Pd _{7.5-x} Te ₃	Ag-Pd
57	35	28	37	Ag ₄ Pd ₃ Te ₄	Ag ₂ Te	PdTe
58	36	27	37	Ag ₄ Pd ₃ Te ₄	Ag ₂ Te	PdTe

* результаты согласно данным РФА

Согласно полученным данным, в системе было обнаружено два новых тройных соединения Ag_{2-x}Pd_{2+x}Te и Ag_{0.5+x}Pd_{7.5-x}Te₃, также было обнаружено, что некоторые соединения нестехиометричны. В таблице 19 приведены результаты рентгеноспектрального микроанализа состава трёхкомпонентных соединений. Исходя из них, были получены области гомогенности:

- для синтетического теларгпалита Ag_{1+x}Pd_{2-x}Te x находится в диапазоне от 0.09 до 0.22;
- для нового соединения Ag_{0.5+x}Pd_{7.5-x}Te₃ х находится в диапазоне от 0.02 до 0.83;
- для нового соединения Ag_{2-x}Pd_{2+x}Te x находится в диапазоне от 0.18 до 0.24.
 Остальные тройные соединения можно считать стехиометричными.

		Bec.%	Bec.%					Мольные единицы		
№ опыта	п	Pd	Ag	Те	Сумма	Pd	Ag	Te		
				сопчеит Ag ₄	Pd ₃ Te ₄					
12	4	25.36	33.44	41.28	100.08	3.01	3.91	4.08		
18	2	25.17	33.35	41.42	99.94	2.99	3.91	4.10		
21	4	25.31	33.83	40.76	99.90	3.00	3.96	4.03		
30	6	25.72	33.58	40.68	99.97	3.05	3.93	4.02		
36	3	25.89	34.15	40.80	100.85	3.04	3.96	4.00		
57	3	25.23	33.61	41.21	100.05	2.99	3.93	4.08		
58	5	25.34	33.59	40.92	99.85	2.99	3.94	4.07		
			лукк	улаасваараит	$Ag_2Pd_{14}Te_9$					
11	3	51.55	8.14	39.24	98.93	13.96	2.17	8.86		
18	7	50.99	7.87	40.40	99.26	13.79	2.10	9.11		
20	4	50.96	8.49	40.56	100.00	13.68	2.25	9.08		

Таблица 19 – Данные РСМА тройных соединений в системе Ag-Pd-Te при 350 °C

21	4	51.15	8.17	40.60	99.92	13.74	2.17	9.09
28	4	52.33	7.08	40.71	100.11	14.03	1.87	9.10
30	6	51.43	8.18	40.48	100.10	13.79	2.16	9.05
31	5	51.12	7.94	40.42	99.48	13.79	2.11	9.09
32	4	52.43	6.74	40.47	99.64	14.12	1.79	9.09
34	4	51.79	7.91	40.42	100.12	13.88	2.09	9.03
36	4	51.53	8.27	40.48	100.28	13.79	2.18	9.03
45	2	51.65	7.34	40.41	99.40	13.95	1.96	9.10
47	4	52.22	7.35	40.91	100.47	13.95	1.94	9.11
48	4	51.99	7.87	40.98	100.84	13.84	2.07	9.10
54	5	50.92	7.32	40.70	98.94	13.82	1.96	9.22
				Ag _{2-x} Pd _{2+x} Te				
22	6	42.57	34.45	23.03	100.05	2.22	1.77	1.00
35	5	43.20	34.76	22.80	100.76	2.24	1.78	0.98
39	5	41.78	35.68	22.76	100.22	2.18	1.83	0.99
40	4	42.29	34.46	22.97	99.72	2.22	1.78	1.00
46	8	41.95	35.26	23.17	100.38	2.18	1.81	1.01
55	8	42.66	34.34	22.92	99.92	2.23	1.77	1.00
			теларг	палит Ag _{1+x} Pd _{2-x} T	ſe			
8	4	43.15	29.11	27.82	100.08	1.82	1.21	0.98
9	8	43.45	26.80	29.69	99.94	1.84	1.12	1.05
11	4	42.93	28.86	27.59	99.38	1.82	1.21	0.97
19	4	42.85	28.89	27.36	99.10	1.82	1.21	0.97
20	6	42.55	28.73	28.53	99.80	1.80	1.20	1.01
24	4	44.49	27.56	28.37	100.41	1.87	1.14	0.99

27	4	43.05	29.48	27.72	100.25	1.81	1.22	0.97
31	4	42.46	28.49	28.34	99.29	1.80	1.19	1.00
34	4	44.66	27.56	28.55	100.78	1.87	1.14	1.00
37	4	44.39	27.38	28.37	100.14	1.87	1.14	1.00
38	5	42.97	29.40	28.23	100.61	1.80	1.21	0.99
39	4	44.16	28.33	27.43	99.92	1.86	1.18	0.96
40	4	45.19	26.17	28.44	99.81	1.91	1.09	1.00
52	4	44.57	26.32	28.59	99.47	1.89	1.10	1.01
53	4	42.52	28.16	28.63	99.31	1.81	1.18	1.01
				Ag _{0.5+x} Pd _{7.5-x} Te ₃				
10	4	64.20	5.13	30.11	99.44	7.48	0.59	2.93
10 22	4	64.20 62.14	5.13 7.11	30.11 31.30	99.44 100.54	7.48 7.18	0.59 0.81	2.93 3.01
10 22 24	4 1 7	64.20 62.14 59.04	5.137.119.25	30.11 31.30 31.50	99.44 100.54 99.79	7.487.186.88	0.59 0.81 1.06	2.933.013.06
10 22 24 25	4 1 7 5	64.2062.1459.0463.59	5.137.119.255.90	30.11 31.30 31.50 31.03	99.44 100.54 99.79 100.51	7.487.186.887.34	0.59 0.81 1.06 0.67	 2.93 3.01 3.06 2.99
10 22 24 25 34	4 1 7 5 5	 64.20 62.14 59.04 63.59 57.78 	 5.13 7.11 9.25 5.90 11.41 	30.11 31.30 31.50 31.03 31.28	99.44 100.54 99.79 100.51 100.46	 7.48 7.18 6.88 7.34 6.68 	0.59 0.81 1.06 0.67 1.30	2.93 3.01 3.06 2.99 3.02
10 22 24 25 34 37	4 1 7 5 5 5 4	 64.20 62.14 59.04 63.59 57.78 57.73 	5.13 7.11 9.25 5.90 11.41 1 1.49	30.11 31.30 31.50 31.03 31.28 31.09	99.44 100.54 99.79 100.51 100.46 100.31	 7.48 7.18 6.88 7.34 6.68 6.69 	0.59 0.81 1.06 0.67 1.30 1.31	2.93 3.01 3.06 2.99 3.02 3.00
10 22 24 25 34 37 40	4 1 7 5 5 4 5	 64.20 62.14 59.04 63.59 57.78 57.73 59.99 	5.13 7.11 9.25 5.90 11.41 1 1.49 7.22	30.11 31.30 31.50 31.03 31.28 31.09 31.23	99.44 100.54 99.79 100.51 100.46 100.31 98.43	 7.48 7.18 6.88 7.34 6.68 6.69 7.08 	0.59 0.81 1.06 0.67 1.30 1.31 0.84	2.93 3.01 3.06 2.99 3.02 3.00 3.08
10 22 24 25 34 37 40 45	4 1 7 5 5 4 5 4 5 4	 64.20 62.14 59.04 63.59 57.78 57.73 59.99 60.66 	5.13 7.11 9.25 5.90 11.41 1 1.49 7.22 6.71	30.11 31.30 31.50 31.03 31.28 31.09 31.23 31.17	99.44 100.54 99.79 100.51 100.46 100.31 98.43 98.54	 7.48 7.18 6.88 7.34 6.68 6.69 7.08 7.15 	0.59 0.81 1.06 0.67 1.30 1.31 0.84 0.78	2.93 3.01 3.06 2.99 3.02 3.00 3.08 3.07
10 22 24 25 34 37 40 45 48	4 1 7 5 5 4 5 4 5 4 5	 64.20 62.14 59.04 63.59 57.78 57.73 59.99 60.66 58.01 	5.13 7.11 9.25 5.90 11.41 1 1.49 7.22 6.71 10.86	30.11 31.30 31.50 31.03 31.28 31.09 31.23 31.17 31.65	99.44 100.54 99.79 100.51 100.46 100.31 98.43 98.54 100.51	7.48 7.18 6.88 7.34 6.68 6.69 7.08 7.15 6.71	0.59 0.81 1.06 0.67 1.30 1.31 0.84 0.78 1.24	2.93 3.01 3.06 2.99 3.02 3.00 3.08 3.07 3.05
10 22 24 25 34 37 40 45 48 49	4 1 7 5 5 4 5 4 5 4 5 5 5	 64.20 62.14 59.04 63.59 57.78 57.73 59.99 60.66 58.01 60.41 	5.13 7.11 9.25 5.90 11.41 1 1.49 7.22 6.71 10.86 7.41	30.11 31.30 31.50 31.03 31.28 31.09 31.23 31.17 31.65 31.62	99.44 100.54 99.79 100.51 100.46 100.31 98.43 98.54 100.51 99.43	7.48 7.18 6.88 7.34 6.68 6.69 7.08 7.15 6.71 7.06	0.59 0.81 1.06 0.67 1.30 1.31 0.84 0.78 1.24 0.85	2.93 3.01 3.06 2.99 3.02 3.00 3.08 3.07 3.05 3.08
10 22 24 25 34 37 40 45 48 49 50	4 1 7 5 5 4 5 4 5 4 5 5 7	 64.20 62.14 59.04 63.59 57.78 57.73 59.99 60.66 58.01 60.41 63.86 	5.13 7.11 9.25 5.90 11.41 1 1.49 7.22 6.71 10.86 7.41 24.4	30.11 31.30 31.50 31.03 31.28 31.09 31.23 31.17 31.65 31.62 31.52	 99.44 100.54 99.79 100.51 100.46 100.31 98.43 98.54 100.51 99.43 99.80 	7.48 7.18 6.88 7.34 6.68 6.69 7.08 7.15 6.71 7.06 7.43	0.59 0.81 1.06 0.67 1.30 1.31 0.84 0.78 1.24 0.85 0.51	2.93 3.01 3.06 2.99 3.02 3.00 3.08 3.07 3.05 3.08 3.08 3.06
10 22 24 25 34 37 40 45 48 49 50 54 55	4 1 7 5 5 4 5 4 5 4 5 7 6 2	64.20 62.14 59.04 63.59 57.78 57.73 59.99 60.66 58.01 60.41 63.86 56.51 61.52	5.13 7.11 9.25 5.90 11.41 1 1.49 7.22 6.71 10.86 7.41 24.4 10.47 7.09	30.11 31.30 31.50 31.03 31.28 31.09 31.23 31.17 31.65 31.65 31.62 31.52 31.58 31.28	 99.44 100.54 99.79 100.51 100.46 100.31 98.43 98.54 100.51 99.43 99.80 98.56 99.89 	7.48 7.18 6.88 7.34 6.68 6.69 7.08 7.15 6.71 7.06 7.43 6.67 7.15	0.59 0.81 1.06 0.67 1.30 1.31 0.84 0.78 1.24 0.85 0.51 1.22 0.81	2.93 3.01 3.06 2.99 3.02 3.00 3.08 3.07 3.05 3.08 3.06 3.11 3.03

При 450 °С (Рисунок 19) в данной системе присутствуют четыре тройных соединения: Ag₂Pd₁₄Te₉ (аналог минерала луккулаисваараит), Ag_{1+x}Pd_{2-x}Te (аналог минерала теларгпалит) и полученные впервые Ag_{0.5+x}Pd_{7.5-x}Te₃ и Ag_{2-x}Pd_{2+x}Te, для новых соединений значение х изменяется от 0.02 до 0.83 и от 0.18 до 0.24 соответственно. Также было обнаружено, что Pd₂₀Te₇ и Pd₁₃Te₃ растворяют серебро, Pd₂₀Te₇ – до 3.5 ат.%, Pd₁₃Te₃ – до 2 ат.% Ag. Обнаруженные трёхфазные ассоциации в системе Ag-Pd-Te при 450 °С приведены ниже:

 $Ag_{2}Te + Ag_{2}Pd_{14}Te_{9} + Ag_{1+x}Pd_{2-x}Te;$

$$Ag_2Pd_{14}Te_9 + Ag_{1+x}Pd_{2-x}Te + Ag_{0.5+x}Pd_{7-x}Te_3;$$

 $Ag_{2-x}Pd_{2+x}Te + Ag_{0.5+x}Pd_{7-x}Te_3 + Ag - Pd (17 at.% Ag);$

 $Ag_2Te + Ag_2Pd_{14}Te_9 + PdTe;$

 $Ag_{2-x}Pd_{2+x}Te + Ag_{0.5+x}Pd_{7-x}Te_3 + Ag - Pd$ (17 at.% Ag);

 $Ag_{2}Te^{*} + Ag_{-}Pd^{*} + Ag_{1+x}Pd_{2-x}Te^{*};$

 $Ag_{2-x}Pd_{2+x}Te \ ss^* + Ag_{0.5+x}Pd_{7.5-x}Te_3 \ ss^* + Ag_{-}Pd^*;$

 $Ag_{2}Pd_{14}Te_{9} + Ag_{1+x}Pd_{2-x}Te + Ag_{0.5+x}Pd_{7.5-x}Te_{3};$

 $Ag_2Pd_{14}Te_9 + Pd_3Te_2 + PdTe;$

 $Ag_2Te + PdTe_2 + PdTe;$

 $Ag_2Te + Ag_2Pd_{14}Te_9 + PdTe;$

 $Ag_2Te + Ag_{1+x}Pd_{2-x}Te + Ag_2Pd_{14}Te_9*;$

 $Ag_2Te + Ag_2Pd_{14}Te_9 + PdTe;$

 $Pd_{20}Te_7 ss + Pd_{13}Te_3 + Ag - Pd$ (44 at.% Ag).

*Результаты согласно данным рентгенофазового анализа.

Рисунок 19 – Фазовая диаграмма системы Ag-Pd-Te при 450 °C и давлении собственного пара

По сравнению с изотермой 450 °С при 350 °С (Рисунок 20) в данной системе присутствует пять тройных соединений, три из которых имеют природные аналоги Ag₄Pd₃Te₄ (сопчеит), Ag₂Pd₁₄Te₉ (луккулаисваараит), Ag_{1+x}Pd_{2-x}Te (теларгпалит), а два были полученные впервые: Ag_{0.5+x}Pd_{7.5-x}Te₃ и Ag_{2-x}Pd_{2+x}Te.

Полученные трехфазные ассоциации в системе Ag-Pd-Te при 350 °C представлены ниже:

 $Ag_{2}Te + Ag_{2}Pd_{14}Te_{9}^{*} + Ag_{1+x}Pd_{2-x}Te;$ $Ag_{0.5+x}Pd_{7.5-x}Te_{3} + Pd_{20}Te_{7} ss^{*} + Ag_{-}Pd^{*};$ $Pd_{20}Te_{7} ss^{*} + Ag_{-}Pd (44 at.\% Ag)^{*} + Pd_{13}Te_{3} ss^{*};$ $Ag_{2}Te + Ag_{1+x}Pd_{2-x}Te + Ag_{-}Pd (7 at.\% Ag);$ $Ag_{2}Te + PdTe_{2} + PdTe;$ $Ag_{2}Te + Ag_{2}Pd_{14}Te_{9} + Ag_{1+x}Pd_{2-x}Te;$ $Ag_{4}Pd_{3}Te_{4} + Ag_{2}Pd_{14}Te_{9} + PdTe;$

 $Ag_{0.5+x}Pd_{7.5-x}Te_3 + Ag_{2-x}Pd_{2+x}Te + Ag - Pd$ (17 at.% Ag);

64

Ag_{0.5+x}Pd_{7.5-x}Te₃ + Pd₂₀Te₇ +Ag-Pd (23 at.% Ag);

$$Ag_2Pd_{14}Te_9 + Pd_3Te_2 + PdTe;$$

 $Ag_4Pd_3Te_4 + Ag_2Pd_{14}Te_9 + PdTe;$

 $Ag_2Pd_{14}Te_9 + Ag_{1+x}Pd_{2-x}Te + Ag_2Te;$

 $Ag_{2}Pd_{14}Te_{9} + Ag_{1+x}Pd_{2-x}Te + Ag_{0.5+x}Pd_{7.5-x}Te_{3};$

 $Ag_{2-x}Pd_{2+x}Te + Ag_{0.5+x}Pd_{7.5-x}Te_3 + Ag-Pd$ (17 at.% Ag);

 $Ag_4Pd_3Te_4 + Ag_2Pd_{14}Te_9 + PdTe;$

 $Pd_{13}Te_3 + Pd_{20}Te_7 + Ag - Pd^*;$

 $Ag_{0.5+x}Pd_{7.5-x}Te_3 + Ag_2Pd_{14}Te_9 + Pd_9Te_3;$

 $Ag_2Pd_{14}Te_9 + Ag_{0.5+x}Pd_{7.5-x}Te_3 + Ag_{1+x}Pd_{2-x}Te *;$

 $Ag_{2-x}Pd_{2+x}Te + Ag_{0.5+x}Pd_{7.5-x}Te_3 + Ag-Pd$ (17 at.% Ag).

*Результаты согласно данным рентгенофазового анализа.

При охлаждении от 450 °C до 350 °C в системе Ag-Pd-Te происходят следующие фазовые реакции:

- 1. эвтектическая кристаллизация Ag₅Te₃ + Te из расплава, обогащённого теллуром;
- образование Ag₄Pd₃Te₄ (аналог минерала сопчеит) из смеси Ag₂Te + PdTe + Ag₂Pd₁₄Te₉ (аналог минерала луккулаисваараит) по перитектоидной реакции.

Эти данные были опубликованы в статье (Vymazalová et al., 2015 A), также в ней более подробно рассмотрены геологические аспекты изучения данной системы.

3.4 Выводы к главе 3

В результате данной части работы были изучены фазовые отношения в тройных системах Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te, и получено по два температурных сечения фазовых диаграмм для каждой системы. Были обнаружены ранее не описанные тройные соединения, подтверждены или уточнены температурные сечения краевых фазовых диаграмм, а также были зафиксированы изменения фазовых отношений при изменении температуры.

Фазовые отношения в системах Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te ожидаемо усложнялись при переходе от серы к теллуру. Кроме того, в системах увеличиваются области гомогенности у большинства двойных и тройных фаз. Несмотря на то, теллуровая система в целом является более легкоплавкой, при прочих равных условиях она приходила к равновесию значительно медленнее чем серная и селеновая системы. От серы к теллуру уменьшается контраст между фазами и размер кристаллитов что усложняет интерпретацию данных.

По результатам данной главы сформулировано <u>первое защищаемое</u> <u>положение</u>:

Фазовые отношения в системах Ag-Pd-S, Ag-Pd-Se при 700 К и 800 К и Ag-Pd-Te при 623 К и 700 К и давлении собственного пара.

Глава 4. Новые соединения и их свойства

При геологических исследованиях месторождений, которые содержат элементы платиновой группы (ЭПГ), нередко бывают обнаружены ранее неизвестные соединения (Vymazalová et al., 2014; Vymazalová et al., 2017; Sluzhenikin et al., 2018 и др.). Так же происходит и при лабораторном изучении фазовых отношений в системах, содержащих ЭПГ.

Чтобы понять, что обнаруженное соединение действительно новое, требуется его охарактеризовать: в первую очередь определить его состав и область гомогенности, если таковая есть, а далее синтезировать однофазный образец для изучения его структуры и физических свойств.

В данной главе описываются соединения, полученные впервые при изучении фазовых отношений в системах Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te.

4.1 Новые соединения в системе Ag-Pd-Se

Три новых тройных соединения $(Ag,Pd)_{22}Se_6$, $AgPd_3Se$ и $Ag_6Pd_{74}Se_{20}$ были обнаружены в системе Ag-Pd-Se. Два из них, $(Ag,Pd)_{22}Se_6$ и AgPd₃Se, устойчивы во всём исследуемом интервале температур (350–530 °C). Соединение $Ag_6Pd_{74}Se_{20}$ устойчиво при температуре выше 430 °C.

4.2 Структура и некоторые физические свойства новых соединений в системе Ag-Pd-Se

Новые фазы были идентифицированы методами рентгеновской порошковой дифрактометрии, рентгеноспектрального микроанализа и оптической микроскопии. Кристаллические структуры были изучены доктором Франтишеком Лауфеком в Чешской геологической службе, г. Прага.

Соединение (Ag,Pd)₂₂Se₆ гомогенно в области составов от 50 до 34 ат.% Ag при 430 °C и от 49 до 35 ат.% Ag при 530 °C. По результатам исследований данных рентгеновской порошковой дифрактометрии (Рисунок 21) оно имеет пространственную группу Fm3m и гранецентрированную кубическую решетку с

параметром а от 12.2697(5) Å при 34 ат.% Ag до 12.4143(9) Å при 50 ат.% Ag. Объём элементарной ячейки V при 39 ат.% Pd равен 1862.55(5) Å³, Z = 4, и рентгенографическая плотность $D_c = 10.01$ г/см³.

Рисунок 21 – Рентгенограмма соединения (Ag,Pd)₂₂Se₆. Получена на приборе PANalytical X'Pert Pro (излучение СоКа, детектор X'Celerator)

Наиболее интенсивные линии в рентгеновском спектре (межплоскостное расстояние, Å (интенсивность, %)): 2.8267 (28), 2.3704 (100), 2.0524 (73), 1.8779 (23), 1.4513 (55).

Кристаллическая структура (Ag,Pd)₂₂Se₆ (Рисунок 22) представляет собой 3а.3а.3а сверхструктуру, производную от Pd структуры (ГЦК), в которой заполнены только 4 из 108 октаэдрических пустот. Кристаллическая структура близка к структуре Cr₂₃C₆. Координаты атомов представлены в таблице 20.

Таблица 20 – Координаты атомов в решётке (Ag,Pd)₂₂Se₆ (Laufek et al., 2013 A)

Атом	Группа	Х	Y	Ζ	B,Å
M1	4a	0	0	0	0.48(9)
M2	4b	М	М	М	0.60(8)
M3	32/'	0.6681(1)	0.6681(1)	0.6681(1)	0.72(4)
M4	48h	0	0.8322(1)	0.8322(1)	0.87(4)
Se(1)	24e	0.7163(2)	0	0	0.93(5)

Рисунок 22 – Структура соединения (Ag,Pd)₂₂Se₆. Красные шарики – Se, синие – атомы металлов

Температура плавления данного соединения составила 570±5 °C. Вероятно, плавление происходит конгрузнтно ((Ag,Pd)₂₂Se₆ \leftrightarrow L). Данный факт может быть использован в целях синтеза монокристалла данного соединения из расплава. Температура плавления определялась следующим образом: предварительно полученное однофазное соединение порошка В виде запаивалось В вакуумированную кварцевую ампулу, которая затем помещалась в безградиентную зону высокотемпературной печи с температурой, при которой соединение заведомо находится в твёрдой фазе, затем температура повышалась с шагом 5 градусов, и после выдержки 30 минут проводился визуальный контроль агрегатного состояния вещества. Результаты этой части работы опубликованы в статье (Laufek et al., 2013 A).

Соединение AgPd₃Se гомогенно в области составов от 21 до 16 ат.% Ад при 430 °C и от 21 до 17 ат.% Ад при 530 °C. Рентгенографическая плотность соединения AgPd₃Se составила 7.46 г·см⁻³. Результаты этой части работы опубликованы в статье (Laufek et al., 2011 A).

Данное соединение имеет пространственную группу симметрии Ра3 (кубическая ячейка) с параметром элементарной ячейки а от 8.632(1) Å при 16 ат.% Ад до 8.6155(6) при 21 ат.% Ад. Рентгенограмма представлена на рисунке 23.

Рисунок 23 – Рентгенограмма соединения AgPd₃Se. Получена на приборе PANalytical X'Pert Pro (излучение CoKα, детектор X'Celerator)

Наиболее интенсивные линии в рентгеновском спектре (межплоскостное расстояние, Å (интенсивность, %)): 2.3925 (85), 2.3057 (100), 2.1569 (51), 2.0925 (46), 1.8829 (49).

В структуре AgPd₃Se каждый атом серебра окружен двенадцатью атомами палладия, тремя атомами селена и одним атомом серебра (Рисунок 24). Двенадцать из них (9Pd и 3Se) образуют искаженный усеченный тетраэдр, который является одним из самых распространенных для интерметаллидов. Кристаллическая структура AgPd₃Se имеет сходство со структурой CaAu₃Ga. Подобные мотивы также наблюдаются в структуре соединений NaAu₃Si и NaAu₃Ge. Координаты атомов представлены в таблице 21.

Рисунок 24 – Структура соединения AgPd₃Se. Синие шарики – Pd, желтые – Se, красные – Ag

Атом	Группа	x	У	Z	Biso [Å]
Pd(1)	24d	0.5869(1)	0.2227(1)	0.6377	(1) 0.46(3)
Ag(1)	8c	0.4066(1)	0.4066(1)	0.4066	(1) 0.59(4)
Se(1)	8c	0.1230(2)	0.1230(2)	0.1230	(2) 0.31(7)

Таблица 21 – Координаты атомов в решётке AgPd₃Se (Laufek et al., 2011 A)

Аg₆Pd₇₄Se₂₀ появляется в системе при 430 °C. Его кристаллическая структура на данный момент не изучена. Попытки синтеза однофазного образца для исследований методом РФА не увенчались успехом – образец содержал Pd₉Se₂, что и осложняло идентификацию кристаллической структуры по рентгенограмме. Наиболее интенсивные линии в рентгеновском спектре (межплоскостное расстояние, Å (интенсивность, %)): 2.3318 (68), 2.2935 (91), 2.2845 (100), 2.2587(61) 2.1004 (64). Соединение формирует стабильные ассоциации с AgPd₃Se и Pd₇Se₂, а также с Pd₄Se и Pd₉Se₂. В природе данное соединение может быть ожидаемо в менее традиционной среде, чем это принято для селенидов, при температурах образования выше 430 °C, вероятнее в ассоциации с Pd₉Se₂.

4.3 Определение транспортных свойств соединений (Ag,Pd)22Se6 и AgPd3Se

Измерение сопротивления образцов производилось на установке, созданной в лаборатории на Кафедре низких температур Физического факультета МГУ им.

М.В. Ломоносова. Изучение транспортных свойств проводилось Татьяной Михайловной Васильчиковой.

Установка представляет собой полую дюралевую трубку, внутри которой на длинном тонком, не проводящем тепло, стержне крепится измерительная часть. Вверху находится винтовой разъем, обеспечивающий герметичность внутреннего объема. Так же сверху располагается трубка для создания вакуума и провода, соединяющие установку с измерительными приборами, вольтметром и температурным контроллером, а также с компьютером (Рисунок 25).

Рисунок 25 – Установка для измерения сопротивления (Ширяев, 2008)

Измерительная часть состоит из латунного патрона и измерительного столика. В патроне находится нагреватель и термометр, на патрон крепятся контакты, к которым присоединяются измерительный столик. Измерительный столик – это латунный цилиндр, который накручивается на винтовую часть патрона, при этом создается тепловой контакт с нагревателем и термометром. На поверхности столика находятся две текстолитовые подложки, сквозь столик рядом с подложками пропущены два витых провода. Концы проводов впаяны в капли олова, находящиеся на подложках. Между подложками на слюдяную пластинку помещается образец. Измерение сопротивления ведется четырехконтактным методом: два контакта крепятся на концах образца и два в центре (Рисунок 26).

Рисунок 26 – Измерительная головка для изучения транспортных свойств при низких температурах (Ширяев, 2008)

Прикрепленные к образцу провода также впаиваются в капли олова. Это позволяет легко проводить демонтаж образца, как со столиком, так и без него.

Вся измерительная часть находится в вакууме и не касается трубки, таким образом обеспечивается теплоизоляция образца.

Токовая и потенциальная пара проводов идут к разъему, находящемуся вверху вставки. К этому же разъему подходят провода от нагревателя и термометра. Через шлейф производится соединение с измерительной схемой, обеспечивающей соединение с вольтметром (измерение тока и напряжения на образце) и температурным контроллером (измерение и контроль температуры образца). Далее измеренные данные поступают на компьютер, где производится их обработка (Ширяев, 2008).

Образцы сначала прессовались в таблетку, а затем им придавалась форма параллелепипеда 2 × 3 × 8 мм.

Температурные зависимости сопротивления были определены для соединений (Ag,Pd)₂₂Se₆ и AgPd₃Se.

Графическое отображение измерений показано на рисунке 27. Исследование проводимости новых фаз в интервале от комнатной температуры до температуры жидкого азота показало, что обе фазы имеют ход проводимости, характерный для металлов, то есть являются интерметаллидами.

Рисунок 27 – Температурная зависимость сопротивления соединений AgPd₃Se и (Ag,Pd)₂₂Se₆

Удельное сопротивление AgPd₃Se при 298 К составило 3.5·10⁻⁴ Ом·см, для соединения (Ag,Pd)₂₂Se₆ оно составило 4.4·10⁻⁴ Ом·см.

Также на кафедре низких температур Физического факультета МГУ им. М.В. Ломоносова д.ф-м.н. О.С. Волковой были изучены магнитные свойства соединений, оба они оказались парамагнетиками.

4.4 Другие тройные соединения

Ag3Pd13S4

Было определено, что данное соединение может находиться в равновесии с Ag_2Pd_3S и $Pd_{16}S_7$, $Pd_{16}S_7$ и Pd_4S , а также с Pd_4S и Ag_2Pd_3S при 430 °C, однако оно не стабильно при 530 °C. Синтез чистого однофазного соединения не удалось произвести, все попытки синтезировать чистую фазу содержали $Ag_3Pd_{13}S_4$ и другое соединение, которое может находиться с ним в равновесии. Самые интенсивные пики этого соединения на рентгенограмме могут быть интерпретированы как кубическая ячейка с параметром решётки а = 7.236 Å, хотя несколько пиков остались неопределёнными.

 $Ag_{0.5+x}Pd_{7.5-x}Te_3$, где 0.02 < x < 0.83, образует твёрдый раствор в диапазоне от 4 до 11 вес.% Ад. Фаза подобного состава (размером 10 µм) была обнаружена в ассоциации с котульскитом, мончеитом, теларгпалитом и туламеенитом в работе

(Grokhovskaya et al., 1992) в Луккулаисваарской интрузии. Синтетическое с соединение формирует ассоциации синтетическим теларгпалитом И синтетическим луккулаиваараитом, синтетическим луккулаиваараитом И синтетическим теллуропалладинитом, синтетическим теларгпалитом И $Ag_{2-x}Pd_{2+x}Te$, $Ag_{2-x}Pd_{2+x}Te$ и Ag-Pd сплавом, а также с синтетическим кейтконитом (Pd₂₀Te₇) и Pd₇Te₃. Кристаллическая структура соединения не определена. Наиболее интенсивные линии в рентгеновском спектре (d в Å(интенсивность)): 3.0145(13), 2.6527(14), 2.4757(27), 2.3825(8), 2.3413(47), 2.2577(38), 2.2061 (100), 2.1967(68), 2.1454(10), 1.9256(24).

Ag_{2-x}**Pd**_{2+x}**Te**, где х находится в диапазоне от 0.18 до 0.24. Фаза с таким же соотношением (Pd + Ag): Te (4:1) была найдена в работе (Kovalenker et al., 1972) в Норильских рудах, а также существование подобного соединения было предположено в статье (Евстигнеева и Трубкин, 2006). Ag_{2-x}Pd_{2+x}Te находится в ассоциации с синтетическим теларгпалитом и Ag-Pd сплавом, а также с Ag_{0.5+x}Pd_{7.5-x}Te₃ и синтетическим теларгпалитом. По результатам расшифровки дифрактограммы РФА данное соединение предварительно имеет гексагональную ячейку с параметрами решётки а = 4.621(3) и с = 14.281(9) Å. Кристаллическая структура соединения не известна.

4.5 Выводы к главе 4

При изучении фазовых отношений в тройных системах Ag-Pd-S, Ag-Pd-Se и Ag-Pd-Te был обнаружен ряд ранее не описанных трёхкомпонентных соединений. Это соединения Ag₃Pd₁₃S₄, (Ag,Pd)₂₂Se₆, AgPd₃Se, Ag₆Pd₇₄Se₂₀, Ag_{0.5+x}Pd_{7.5-x}Te₃ и Ag_{2-x}Pd_{2+x}Te. Для двух из них ((Ag,Pd)₂₂Se₆ и AgPd₃Se) были получены и описаны кристаллические структуры, также были исследованы транспортные свойства данных соединений, в результате чего было получено, что в диапазоне температур от 80 К до 310 К данные соединения обладают металлической проводимостью.

Новые тройные соединения, полученные в одной из систем, не имеют кристаллохимических аналогов в двух других системах.

Остальные соединения были описаны лишь частично, определена область их гомогенности, а также получены предварительные данные по их структуре.

По итогам данной главы сформулировано второе защищаемое положение:

Новые соединения (Ag,Pd)₂₂Se₆, AgPd₃Se, Ag₆Pd₇₄Se₂₀, Ag₃Pd₁₃S₄, Ag_{0.5+x}Pd_{7.5-x}Te₃ (0.02 < x < 0.83) и Ag_{2-x}Pd_{2+x}Te (0.18 < x < 0.24) и растворимости третьего компонента в халькогенидах серебра и палладия.

Глава 5. Определение термодинамических свойств равновесий с участием синтетических минералов методом измерения электродвижущих сил в твердотельных гальванических ячейках

Фазовые диаграммы, полученные в данном исследовании, показывают ассоциации, которые могут присутствовать в различных геологических системах. Термодинамические свойства данных систем могут быть определены ЭДСметодом. Данный метод хорош для определения термодинамических свойств как отдельных соединений, так и равновесий, что в данном случае является предпочтительным из-за недостатка литературных термодинамических данных.

В нашем случае все тройные системы содержат серебро, а значит, для ЭДСизмерений будет использоваться серебропроводющий твёрдый электролит.

5.1 Теоретическое обоснование

Принцип метода электродвижущих сил заключается в составлении обратимой электрохимической цепи (ячейки), суммарная потенциалобразующая реакция которой совпадает (или непосредственно связана) с исследуемой химической реакцией.

Для примера рассмотрим реакцию образования сульфида серебра Ag₂S из элементов в их стандартном состоянии:

$$2Ag_{(cr)} + S_{(cr)} = Ag_2S_{(cr)}, \tag{R1}$$

Такую реакцию можно реализовать в полностью твердотельной ячейке с твердым электролитом (ТЭЛ) со специфической ионной проводимости по иону Ag⁺, который называется потенциалобразующим элементом и обязательно находится слева и справа от твердого электролита:

(-) Pt | Ag | Ag⁺-ТЭЛ | Ag₂S, S |Pt(+)
 где Ag⁺-ТЭЛ – это твёрдый электролит с проводимостью по катиону Ag⁺.

За счет разницы между химическими потенциалами Ag слева и справа от ТЭЛ возникает ЭДС. Если регистрировать ЭДС прибором с бесконечно большим

сопротивлением, то можно считать цепь разомкнутой – нет переноса вещества через границу электрод-электролит.

Полуреакции в ячейке могут быть записаны как:

 $2Ag_{(cr)} = 2Ag^+ + 2e$ (левый электрод (-), система сравнения) $2Ag^+ + 2e + S_{(cr)} = Ag_2S_{(cr)}$ (правый электрод (+), система образца)

 $2Ag_{(cr)} + S_{(cr)} = Ag_2S_{(cr)}$ (суммарный потенциалообразующий процесс)

Таким образом, суммарным потенциалообразующим процессом является реакция (R1), в которой все фазы находятся в стандартном состоянии, и зависимость потенциала от температуры для данной ячейки сразу пересчитывается в энергию образования халькогенида по формуле (2).

$$\Delta_{F}G^{o}(\mathcal{A}\mathcal{H} \cdot \mathcal{M} o \pi b^{-1}) = -10^{-3}n \cdot E \cdot F$$

$$\tag{2}$$

где n – число электронов, участвующих в реакции, (для реакции (R1) n = 2), F – постоянная Фарадея, равная 96485.3383 Кл/моль, а *E* – ЭДС, мВ.

Также, зная экспериментальную зависимость E(T), можно определить изменение энтропии и энтальпии реакции. Вид же самой зависимости E(T) связан с изменением теплоемкости реакции $\Delta_{\rm r}C_p$.

Для твердофазных реакций, как правило, зависимости E(T), имеют вид: E = a + bT, $\Delta_r C_p = 0$ или $E = a + bT + cT \ln(T)$, $\Delta_r C_p = \text{const} \neq 0$ (Kiukkola and Wagner, 1957; Третьяков, 1978).

Для изучения реакций с участием халькогенидов, не содержащих потенциалобразующего элемента Ag, например

$$PdS_{(cr)} + S_{(cr)} = PdS_{2(cr)}$$
(R2)

можно воспользоваться реакцией (R1) в качестве вспомогательной при условии, что в системе не образуются дополнительные фазы или твёрдые растворы с Ag₂S. Тогда искомая реакция будет разностью реакций (R1) и (R2):

$$2Ag_{(cr)} + PdS_{2(cr)} = Ag_2S_{(cr)} + PdS_{(cr)},$$
(R3)

которую можно реализовать в ячейке

$$(-) Pt | Ag | Ag^+-T \Im \Pi | Ag_2S, PdS, PdS_2 | Pt(+)$$

$$(B)$$

Наиболее наглядно металл-сульфидные и сульфид-сульфидные равновесия изображаются в координатах lgfS_{2(gas)} — обратная температура. Фугитивность газообразного халькогена над равновесием может быть определена из температурной зависимости ЭДС ячейки (Osadchii and Chareev, 2006). Для определения фугитивности газообразного халькогена в реакции (R3) необходимо для потенциалобразующей реакции (R1) принять в качестве стандартного состояния халькогена газообразное, например, в виде идеального двухатомного газа:

$$2Ag_{(cr)} + \frac{1}{2}S_{2(gas)} = A_2S_{(cr)},$$
(R4)

тогда в равновесии (R3) его активность как функцию температуры и ЭДС ячейки (А) можно определить с помощью уравнения

$$\lg fS_{2(gas)} = \frac{2 \cdot (\Delta_r G_T(R4) + nFE(A))}{RT \ln 10}$$
(3)

где $\Delta_r G_T (\mathbf{R4}) = \Delta_f G_T (\mathbf{Ag}_2 \mathbf{S}_{(cr)}) - \Delta_f G_T (\mathbf{S}_{2(gas)})$

При E(B) = 0 вычисленная из уравнения (3) активность халькогена как функция температуры в координатах lgfS_{2(gas)} – 1/T будет соответствовать равновесию Ag - Ag₂S. Максимальные значения E(B), рассчитанные из равенства $\Delta_f G_T (Ag_2S_{(cr)}) = -n \cdot F \cdot E(B)$ согласно уравнению (3), определяют положение линии конденсации/сублимации газообразного халькогена (S_(cr, 1) = ½ S_{2(gas)}). Таким образом, определяются верхний и нижний пределы, в которых возможно определение термодинамических параметров для реакции (R3).

Существует ограниченное количество надёжных и удобных в работе ТЭЛ со специфической катионной проводимостью. В основном это суперионики серебра, работающие в широком температурном интервале: AgI (420 < T, K < 727), RbAg4I5 (240 < T, K < 513), AgBr_{0.2}I_{0.8} (273 < T, K < 650). Однако применение этих электролитов в сочетании с буферными системами позволяет определять термодинамические эффекты многих химических реакций.

Таким образом, после построения фазовых диаграмм изученных систем стало очевидно, что существует возможность исследования термодинамических свойств равновесий в данных системах ЭДС-методом.

В качестве такого равновесия в ситеме Ag-Pd-S была выбрана рассмотренная в качетве примера ассоциация Ag₂S + PdS₂ + PdS (область 1 на рисунке 28), в которойучаствует синтетический минерал высоцкит. Данное равновесие входит в виртуальную реакцию (R3), характеризуемую красной линией и линией двухфазного равновесия Ag₂S + PdS на Рисунке 28.

Рисунок 28 – Область электрохимического эксперимента в ячейке (А) на фазовой диаграмме

В системе Ag-Pd-Se для изучения было выбрано равновесие Ag₂Se-Ag₂Pd₃Se₄-PdSe₂ (область 2 на рисунке 29). В данную ассоциацию входят аналоги минералов науманита (PdSe₂) и кристанлеита (Ag₂Pd₃Se₄).

Для изучения термодинамических свойств в системе Ag-Pd-Te было выбрано равновесие Ag₂Te-PdTe-PdTe₂, в которое входят аналоги минералов котульскита (PdTe) и меренскита (PdTe₂) (область 3 на рисунке 29).

Рисунок 29 – Области электрохимических экспериментов на фазовых диграммах

5.2 Конструкция твердотельных гальванических ячеек для изучения термодинамических свойств равновесий ЭДС-методом

Смесь фаз для системы образца синтезировалась также методом «сухого» синтеза в кварцевых вакуумированных ампулах. Начальный состав выбирался, исходя из фазовой диаграммы тройной системы. Фазовый состав контролировался при помощи РФА до и после (чтобы исключить прохождение химической реакции) электрохимических измерений. Для изготовления системы образца полученная смесь прессовали под нагрузкой 2.5 тонны в таблетку диаметром ~6 мм и высотой 3-4 мм.

Электрод системы сравнения представлял собой таблетку из серебра диаметром ~6 мм и высотой 3 мм.

В качестве твердого электролита использовался поликристаллический AgI или RbAg₄I₅. Примерно 0.4 грамма электролита в виде порошка прессовали при нагрузке 2.5 тонны в таблетку диаметром 6 мм и высотой 3 мм.

Ячейки собирали в держателе ячейки в виде трубки из кварцевого стекла (внутренний диаметр ~6.1 мм) в последовательности, как показано на Рисунке 30. Затем ячейку продували аргоном высокой чистоты в течении 30 минут и помещали в печь сопротивления, управляемую через высокопрецизионный терморегулятор. Подробное описание экспериментальной установки с твёрдыми электролитами приведено в работе (Воронин и Осадчий, 2011). Измерения производили в токе сухого аргона (2-3 см³·мин⁻¹).

Рисунок 30 – Принципиальная схема твердофазной ЭДС ячейки с общим газовым пространством.

1 – платиновая проволока (токоотводы), 2 – фиксатор (керамическая соломка), 3 – держатель ячейки (кварцевая трубка), 4 – пружина (нагрузка 70–100 г), 5 – толкатель (кварцевая трубка), 6 – инертный электрод из графита, 7 – система образца, 8 – твердый электролит, 9 – система сравнения, 10 – термопара, 11 – резиновая пробка, 12 – вход/выход инертного газа, 13 –

контейнер из кварцевого стекла, 14 – печь сопротивления (Воронин и Осадчий, 2011)

Собранную ячейку помещали в печь сопротивления, управляемую с помощью высокопрецизионного терморегулятора. ЭДС ячеек и термопары измеряли с точностью ± 0.005 мВ. Равновесные значения ЭДС достигали в течение нескольких суток и определяли визуально (когда значения ЭДС и температуры несколько часов оставались в пределах ± 0.02 мВ и ± 0.15 К соответственно).

5.3 Равновесие PdS (высоцкит) – PdS₂

Реакция (R3) была осуществлена в твердотельной гальванической ячейке (A) и экспериментально была получена температурная зависимость ЭДС данной

ячейки. Графическое изображение полученных данных представлено на Рисунке 31, а сами экспериментальные данные приведены в таблице 22.

$$(-) Pt | Ag | Ag_4RbI_5 | PdS_2, PdS_4g_2S | Pt (+)$$
(B)

$$2Ag_{(cr)} + PdS_{2(cr)} = Ag_2S_{(cr)} + PdS_{(cr)}$$
(R3)

Рисунок 31 – Экспериментальная зависимость ЭДС ячейки (В). Размер точек соответствует величине ошибки измерения

Из хода зависимости явно виден фазовый переход в одном из компонентов исследуемой ассоциации. По данным справочника (Barin, 1995) в Ag₂S при 450 K происходит переход $\alpha \rightarrow \beta$, что соответствует полученным данным.

<i>Т</i> , К	<i>Е</i> , мВ	ΔE , мВ	<i>Т</i> , К	<i>Е</i> , мВ	ΔE , мВ
444.04	155.28	1.80	441.7	152.98	-0.11
433.36	153.16	1.46	436.22	150.75	-1.43
422.24	151.1	1.25	452.41	156.86	1.48
411.21	148.57	0.56	451.57	154.66	-0.38
400.18	146.95	0.78	463.26	161.78	1.99
389.64	144.89	0.47	474.06	165.39	1.22
378.83	143.13	0.51	485.11	169.26	0.60
368.01	141.46	0.64	496.21	173.93	0.76
357.67	139.61	0.52	490.45	171.39	0.56
346.58	137.96	0.71	479.51	166.98	0.59
336.05	135.76	0.27	468.64	161.62	-0.35
325.74	133.9	0.13	457.63	157.2	-0.30
341.94	136.26	-0.21	462.93	160.25	0.60
353.01	137.77	-0.55	473.44	164.2	0.28
363.71	139.44	-0.66	484.33	167.99	-0.35
375.18	141.24	-0.77	495.32	172.19	-0.62
386.05	142.93	-0.89	489.78	169.81	-0.75
396.96	144.85	-0.79	478.81	164.71	-1.39
408	146.38	-1.10	467.85	159.69	-1.96
419.41	148.17	-1.21	456.9	155.32	-1.88
430.5	149.74	-1.49			

Таблица 22 – Экспериментальные данные ячейки (B)

 $\Delta E = E$ (экспериментальное) – E(аппрокс. уравнение)

Зависимость имеет следующее численное выражение:

E(B), м $B = (79.51 \pm 4.39) + (0.17 \pm 0.01) \cdot T$

(325 < *T*, K < 444), k = 23

до фазового перехода;

 $E(B), MB = -(28.40 \pm 17.90) + (0.41 \pm 0.04) \cdot T$ (5)

(451 <*T*, K< 496), k = 18

после фазового перехода.

Совместным решением уравнений (4) и (5) получаем температуру перехода в Ag₂S равную 449.6 К.

Далее по формуле (2) была рассчитана $\Delta_r G$ (R3): $\Delta_r G$ (R3), Дж·моль⁻¹ = $-32.15 \cdot T - 15342$, (325 < T, K < 444) $\Delta_r G$ (R3), Дж·моль⁻¹ = $-78.39 \cdot T + 5478.7$, (451 < T, K < 496).

Так как термодинамические свойства сульфидов палладия не могут быть напрямую рассчитаны из-за отсутствия надежных данных и для PdS, и для PdS₂, то при помощи экспериментальных данных был получен логарифм фугитивности серы над равновесием высоцкит (PdS)-PdS₂ (R5).

$$PdS_{(cr)} + 1/2S_{2(gas)} = PdS_{2(cr)}$$
 (R5)

Используя для расчета $\Delta_f G$ (R4) в формуле (3) данные из справочника (Barin, 1995):

$$\Delta_f G$$
 (α-Ag₂S_(cr)), кДж·моль⁻¹ = $-0.0252 \cdot T - 33.033$
 $\Delta_f G$ (β-Ag₂S_(cr)), кДж·моль⁻¹ = $-0.0279 \cdot T - 31.812$
 $\Delta_f G$ (S_{2(gas)}), кДж·моль⁻¹ = $-0.1398 \cdot T + 120.31$,

получаем следующие зависимости фугитивности серы (Рисунок 32):

$$\lg f S_{2(\text{gas})} (\text{R5}) = (8.01 \pm 0.11) - (8.13 \pm 0.04) \cdot (1000/T), (325 < T/\text{K} < 444)$$
(6)

$$\lg f S_{2(\text{gas})}(\text{R5}) = (12.57 \pm 0.77) - (10.18 \pm 0.37) \cdot (1000/T), (451 < T/\text{K} < 497)$$
(7)

Рисунок 32 – Полученная температурная зависимость фугитивности серы над равновесием высоцкит (PdS)-PdS₂

На рисунке 32, помимо экспериментальных данных, присутствуют линии конденсации серы, реакции образования $Ag_2S_{(cr)}$ и других сульфидов из $S_{2(gas)}$ и металла, значения которых взяты из справочника (Barin, 1995).

Кроме того, можно использовать стандартную энтальпию образования PdS из работы (Zubkov et al., 1998), равную – (78.1 ± 11.0) кДж·моль⁻¹, и энтальпию образования PdS из работы (Polotnyanko et al., 2020), равную 51.98 ± 0.10 Дж·моль⁻¹·K⁻¹, для расчета стандартной энергии образования PdS, и, в сочетании с термодинамическими данными α -Ag₂S из справочника (Barin, 1995) и низкотемпературной частью зависимости $\Delta_r G(R3)$, рассчитать термодинамические свойства PdS₂.

5.4 Равновесие Ag2Pd3Se4 (кристанлеит)-PdSe2-Ag2Se (науманнит)

Систему образца для ячейки (С) готовили из шихты 28 ат.% Ag, 23 ат.% Pd и 49 ат.% Se. Смесь отжигали в вакуумированных ампулах из кварцевого стекла три дня при 750 °C, 1 день при 850 °C и далее отжигали при 365 °C в течение трех

месяцев с одним промежуточным перетиранием. Охлаждение ампул производили на воздухе.

При помощи твердотельной ячейки (C), была получена температурная зависимость ЭДС виртуальной реакции (R6) (уравнение 8) в диапазоне температур от 425 K до 648 K. Экспериментально полученные данные приведены в таблице 23. (-) Pt | Ag | AgI | PdSe₂, Ag₂Pd₃Se₄,Ag₂Se | Pt (+) (C) $3PdSe_2 + 6Ag = Ag_2Pd_3Se_4 + 2Ag_2Se$ (R6) E(B), MB = 189.5 ± 15.8 - (0.97 ± 0.22) · T + (0.16 ± 0.03) · T · lnT (8), где (425 <T, K < 648), k = 30

Таблица 23 – Экспериментальные данные ячейки (С)

<i>Т</i> , К	<i>Е</i> , мВ	ΔE , мВ	<i>Т</i> , К	<i>Е</i> , мВ	ΔE , мВ
644.29	244.83	0.19	523.85	216.9	0.19
644.46	244.87	0.19	523.77	216.66	-0.03
631.28	242.08	0.65	503.41	212.59	0.20
647.39	245.22	-0.18	482.64	208.34	0.19
612.17	236.65	-0.15	482.67	208.15	-0.01
595.69	233.18	0.30	482.68	208.09	-0.06
595.4	232.66	-0.16	450.82	202.09	0.17
595.35	232.72	-0.08	450.81	202.08	0.16
572.65	228.03	0.49	472.29	206.28	0.20
572.63	227.32	-0.21	472.29	205.9	-0.18
549.68	222.77	0.42	493.33	209.71	-0.60
549.6	222.6	0.26	461.41	204.17	0.22
528.8	218.59	0.8	461.52	204	0.03
528.99	217.6	-0.22	440.91	200.19	0.14
523.85	217.06	0.35	425.53	197.46	0.23

 $\Delta E = E$ (экспериментальное) – E(аппрокс. уравнение)

Полученный массив данных (Рисунок 33) не имеет очевидных изломов, что свидетельствует об отсутствии фазовых переходов первого рода в изучаемом температурном интервале у фаз, участвующих в реакции. Массив отличался от линейного, поэтому был аппроксимирован уравнением вида $E(T) = a + b \cdot T + c \cdot T \cdot ln$ (T), исходя из предположения, что $\Delta_r C_p$ постоянна, но не равна нулю.

Рисунок 33 – Экспериментальная зависимость ЭДС ячейки (С). Размер точек соответствует величине ошибки измерения

Термодинамические свойства соединения Ag₂Pd₃Se₄ не могут быть рассчитаны из энергии Гиббса (R6), т.к. отсутствуют надёжные данные для соединения PdSe₂. Однако, аналогично сульфидной системе, рассчитали логарифм фугитивности селена (реакция R7) над равновесием Ag₂Pd₃Se₄-PdSe₂-Ag₂Se:

В случае, если составы фаз строго стехиометричны, то ЭДС ячейки, энергия реакции и энергии образования участвующих фаз в ячейке (С) связаны по уравнению

 $\Delta_{\rm r}G(\rm R6) = -6FE = 2\Delta_{\rm f}G_{\rm T} (\rm Ag_2Se, \, cr) + \Delta_{\rm f}G_{\rm T} (\rm Ag_2Pd_3Se_4, \, cr) - 3\Delta_{\rm f}G_{\rm T} (\rm PdSe_2, \, cr) (9).$

Температурная зависимость фугитивности газообразного селена на линии равновесной ассоциации Ag₂Pd₃Se₄-PdSe₂-Ag₂Se определяется равновесием

$$3PdSe_2(cr) + Ag_2Se(cr) = Ag_2Pd_3Se_4(cr) + 3/2 Se_2(g)$$
 (R7)
и может быть рассчитана по уравнению:

$$3/2\Delta_{f}G_{T} (Se_{2}, gas) + 3/2RTlnfSe_{2}(gas) + \Delta_{f}G_{T} (Ag_{2}Pd_{3}Se_{4}, cr) = 3\Delta_{f}G_{T} (PdSe_{2}, cr) + \Delta_{f}G_{T} (Ag_{2}Se, cr)$$
(10).

Сложение уравнений (9) и (10) приводит к уравнению (11), связывающему ЭДС ячейки (С) и фугитивность селена на линии равновесия Ag₂Pd₃Se₄-PdSe₂-Ag₂Se:

$$RTlnfSe_2(gas) = 2\Delta_f G_T (Ag_2Se, cr) + 4FE - \Delta_f G_T (Se_2, gas)$$
(11),

или к уравнению

 $RTlnfSe_2(gas) = 2\Delta_f G_T (Ag_2Se^*, cr) + 4FE$ (12),

где $\Delta_f G_T (Ag_2Se^*, cr)$ – энергия образования $Ag_2Se(cr)$ из $Se_2(gas)$ и металлического серебра.

Видно, что уравнения (11) и (12) не зависят от термодинамических свойств и состава кристанлеита и вербикита. Другими словами, фугитивность селена на линии равновесия Ag₂Pd₃Se₄-PdSe₂-Ag₂Se может быть получена напрямую из ЭДС измерений ячейки (С) с использованием термодинамических данных только Ag₂Se.

Таким образом, для расчета активности газообразного селена для равновесий, в состав которых входит селенид серебра, необходимо знание термодинамических свойств Ag₂Se. Энергия образования β -науманнита из серебра и газообразного селена Se₂ была рассчитана нами из комбинации данных, полученных в работах (Osadchii and Echmaeva, 2007) и (Nasar and Shamsuddin, 1997). В работе (Osadchii and Echmaeva, 2007) методом ЭДС была исследована реакция образования α -Ag₂Se из металлического серебра и твердого селена. Кроме того, была исследована реакция образования β -Ag₂Se немного выше температуры α - β перехода в интервале 406–460 K. В работе (Nasar and Shamsuddin, 1997) была изучена реакция образования β -Ag₂Se из металлического серебра и жидкого селена в интервале 639– 824 K. Оба экспериментальных массива были объединены, и из них была вычтена энергия образования газообразного селена из селена, находящегося в стандартном состоянии (твердого при T < 490 K и жидкого при T > 490 K). Данные по Δ_f GT для Se₂ были взяты из (Barin, 1995). В результате был получен массив данных Δ_f GT (β - Аg₂Se*, cr) – энергия образования β-Ag₂Se из металлического серебра и газообразного Se₂ в интервале 406–824 К. Массив был аппроксимирован методом нелинейного взвешенного МНК уравнением a + bT + cTln(T), из предположения, что $\Delta_r C_p$ постоянна и не равна нулю. Так как данные из работы (Osadchii and Echmaeva, 2007) имели меньший разброс и находились ближе к температурному интервалу наших измерений, их вес был увеличен в десять раз по сравнению с данными (Nasar and Shamsuddin, 1997). В результате получили зависимость:

 $\Delta_{\rm f} G_{\rm T} \left(\beta - Ag_2 Se^*, \, cr\right) = -109720 \pm 1310 + (143.7 \pm 17.1) \cdot T - (15.36 \pm 2.32) \cdot T \cdot \ln T (13)$

Доверительный интервал был взят с вероятностью 95%. Еще большее увеличение весов данных из работы (Osadchii and Echmaeva, 2007) не приводило к заметным изменениям коэффициентов уравнения (13).

Подставляя уравнение (13) в уравнение (12), получаем уравнение (14) для определения фугитивности Se₂(gas) в любых ЭДС измерениях в гальванических ячейках с Ag⁺ проводящим электролитом и включающих β-Ag₂Se в изучаемом фазовом равновесии:

$$\lg f_{se_2} = \frac{20.159 \cdot E - 1.605 \cdot T \cdot \ln T - 11462.2}{T} + 15.012$$
(14),

где Е – ЭДС, мВ, Т – температура, К.

Таким образом, получаем уравнение 15 – температурную зависимость фугитивности Se₂ (gas) над равновесием Ag₂Pd₃Se₄-PdSe₂-Ag₂Se (реакция R7). $lgfSe_{2(gas)}(R7) = (7.71 \pm 0.05) - (8.52 \pm 0.03) \cdot (1000/T)$ (15), где (425 <*T*, K < 648).

Графический вид зависимости в сравнении с другими минеральными равновесиями приведён на Рисунке 34.

Рисунок 34 – Полученная температурная зависимость фугитивности Se₂ (gas) на линии равновесия Ag₂Se-PdSe₂-Ag₂Pd₃Se₄. Для сравнения приведены температурные зависимости фугитивности Se₂ (gas) над фазовыми равновесиями, расчет которых сделан на основании данных из работ (Osadchii and Echmaeva, 2007) и (Simon and Essene, 1996)

Результаты данной части работы опубликованы в статье (Криставчук и др., 2019 А).

5.5 Равновесие РdTe (котульскит)-РdTe₂ (меренскиит)

При помощи твердотельной ячейки (D), была получена температурная зависимость ЭДС виртуальной реакции (R8) в диапазоне температур от 371.7 до 493.6 К.

$$(-) C_{(graphite)} | Ag | RbAg_4I_5 | Ag_2Te, PdTe, PdTe_2 | C_{(graphite)}(+)$$
(D)

$$2Ag + PdTe_2 = PdTe + Ag_2Te$$
(R8)

Инертные электроды изготавливали из графитового стержня для спектрального анализа диаметром 6 мм, которые соединяли с платиновой проволокой.

Для изготовления электрода системы образца смесь PdTe₂ + PdTe + Ag₂Te (с мольным отношением 1:1:1) перетирали (гомогенизировали) в агатовой ступке и прессовали под нагрузкой 2.5 тонны в таблетку диаметром ~6 мм и высотой 3-4 мм.

Полученные равновесные *E*-*T* значения в ячейке (D) приведены в таблицах 24 и 25 и показаны на Рисунке 35.

Таблица 24 – Измеренные температуры и ЭДС ($E_{изм.}$) гальванической ячейки (D), реакция (R8.1) и величины $\Delta E = E_{изм.} - E_{расч.}$, где $E_{расч.}$ вычислено по уравнению (16)

T/K	$E_{\text{изм.}}/\text{mV}$	ΔE
414.4	88.6	0.1
409.2	87.9	0.4
403.3	85.6	-0.7
392.8	84.6	0.3
387.5	83.1	-0.1
382.1	81.8	-0.4
371.7	80.4	0.3

Таблица 25 – Измеренные температуры и ЭДС ($E_{изм.}$) гальванической ячейки (D), реакция (R8.2) и величины $\Delta E = E_{\mu_{3M.}} - E_{pacy.}$, где $E_{pacy.}$ вычислено по уравнению (17)

T/K	<i>Е</i> _{изм.} /mV	ΔE
419.9	89.5	-0.2
430.9	92.7	0.1
462.2	101.4	-0.2
472.6	104.2	-0.3
482.9	107.2	0.1
493.6	110.0	0.1
487.8	108.4	0.1
477.4	105.4	0.1
467.1	102.5	-0.1
456.7	99.9	-0.1
446.9	97.0	-0.1
435.9	94.0	0.1
425.2	91.4	-0.1
421.0	90.1	-0.1

Рисунок 35 – Температурная зависимость ЭДС ячейки (D). Показан α ↔ β переход в Ag₂Te при 419.6 К. Размер точек соответствует величине ошибки измерения

Время установления равновесных значений ЭДС низкотемпературной части зависимости (R8.1) было долгим (на получение одной экспериментальной точки требовалось несколько суток, а ниже 370 К равновесных точек получить не удалось), тогда как в высокотемпературной части (R8.2), равновесие устанавливалось быстро.

Низкотемпературная и высокотемпературная ветви аппроксимированы линейными уравнениями:

$$E(C/R8.1), MB = (6.52 \pm 9.40) + (0.20 \pm 0.02) \cdot T$$
(16)

$$(371.7 < T/K < 414.4), k = 7, R^2 = 0.9822;$$

$$E(C/R8.2), MB = -(26.28 \pm 1.50) + (0.28 \pm 0.01) \cdot T$$
(17)

$$(419.9 < T/K < 493.6), k = 16, R^2 = 0.9995,$$

что, как правило, характерно для твердофазных реакций (Третьяков, 1978). Это отвечает условию, что величина $\Delta_r C_p$ постоянна и равна нулю. Ошибки

коэффициентов уравнений рассчитывали методом наименьших квадратов по критерию 2σ , а k – количество экспериментальных точек, R^2 – коэффициент корреляции экспериментальных данных.

Температуру перехода в Ag₂Te определяли совместным решением уравнений (16) и (17):

 $T_{\rm tr} ({\rm Ag_2Te}) = (419.6 \pm 6.1) {\rm K}.$

Зная температуру фазового перехода и наклоны температурных зависимостей ЭДС до и после перехода, по уравнению (18) рассчитывали энтальпию фазового перехода в Ag₂Te:

$$\Delta_{\rm tr} \mathbf{H}_{(\alpha \to \beta)} = n \cdot \mathbf{F} \cdot \mathbf{10}^{-3} \cdot \left[(\partial E / \partial T)_{\beta} - (\partial E / \partial T)_{\alpha} \right]_p \cdot T_{\rm tr}, \tag{18}$$

где $(\partial E/\partial T)_p$ наклон высокотемпературной (β) и низкотемпературной (α) зависимости ЭДС.

 $\Delta_{\rm tr} H ({\rm Ag}_2 {\rm Te}) = - (6330 \pm 1184)$ Дж·моль ⁻¹.

Полученные величины хорошо согласуются с литературными данными: 421 К и 6598 Дж·моль⁻¹ в (Barin, 1995); 421 К и 7400 Дж·моль⁻¹ в (Mills and Richardson, 1973); 424 К и (5245 ± 1532) Дж·моль⁻¹ в (Voronin et al, 2017).

Как было отмечено в литературном обзоре, анализ данных по стандартным термодинамическим свойствам моно- и дителлурида палладия (таблица 11) не позволяет выбрать данные для одного из них, чтобы использовать их для расчета данных для другой.

Фугитивность теллура

Используя экспериментальные данные, был рассчитан логарифм фугитивности теллура над равновесием:

$$PdTe + 1/2Te_{2(gas)} = PdTe_2$$
(R9),

для которого, по аналогии с предыдущими ячейками, получаем:

 $\lg f \operatorname{Te}_{2(\operatorname{gas})}(\mathsf{R9}) = 2 \cdot (\Delta_f G_T(\operatorname{Ag}_2 \operatorname{Te}^*) - \Delta_r G_T(\mathsf{R1})) / (\mathsf{R}T \ln 10),$

где ΔG (Ag₂Te*) – энергия образования Ag₂Te из серебра и Te_{2(gas)},

 $R = 8.3144598 \ Дж \cdot моль^{-1} \cdot K^{-1} - универсальная газовая постоянная.$

Для расчета Δ_/G (Ag₂Te*) использовались данные из работы (Voronin et al., 2017) и справочника (Barin, 1995). С использованием этих данных рассчитали температурную зависимость фугитивности теллура над равновесием (R9):

$$\lg f \operatorname{Te}_{2(\mathrm{gas})}(\mathrm{R9}) = (9.21 \pm 0.07) - (11.44 \pm 0.03) \cdot (1000/T), \tag{19}$$

(371.7 < *T*/K < 493.6)

На Рисунке 36 показана рассчитанная по уравнению (19) температурная зависимость фугитивности теллура на линии равновесия моно- и дителлурида палладия в сравнении с данными по системе Ag-Te, взятыми из работы (Voronin et al., 2017) и металл-теллуридными равновесиями, данные для которых взяты из (Simon and Essene, 1996), а также линия конденсации газообразного теллура (Barin, 1995).

Рисунок 36 – Полученная температурная зависимость фугитивности Te_{2 (gas)} на линии равновесия PdTe-PdTe₂. Для сравнения приведены температурные зависимости фугитивности Se2 (gas) над фазовыми равновесиями, расчет которых сделан на основании данных из работ (Voronin et al, 2017) и (Simon and Essene, 1996)

Термодинамические свойства реакции (R11)

Кроме фугитивности газообразного теллура, из полученной температурной зависимости ЭДС ячейки (D) могут быть получены термодинамические свойства реакции R11.

Для этого реакцию (R8) можно рассматривать как разность двух реакций:

$$2Ag + Te = Ag_2Te \tag{R10}$$

И

 $PdTe + Te = PdTe_2$

(R11).

Зная температурную зависимость ЭДС ячейки (D) и используя основные уравнения термодинамики, можно определить следующие термодинамические функции:

 $\Delta_{\rm r} G(Дж \cdot {\rm моль}^{-1}) = -nFE \cdot 10^{-3}$

 $\Delta_{\rm r} S(Дж \cdot K^{-1} \cdot {\rm моль}^{-1}) = {\rm n} F \cdot (dE/dT) \cdot 10^{-3}$

 $\Delta_{\rm r} {\rm H} ({\rm Д} {\rm ж} \cdot {\rm моль}^{-1}) = - {\rm n} {\rm F} \cdot [E - (dE/dT) \cdot T] \cdot 10^{-3}$

где n = 2 – число электронов, участвующих в реакции (R8), F = 96485.33289 С·моль⁻¹ – постоянная Фарадея (Mohr et al., 2016), а E - ЭДС, мВ.

Термодинамические свойства Ag и Te (Barin, 1995) и Ag₂Te (Voronin et al, 2017) приведены в таблице 26. Так как данные для PdTe и PdTe₂ противоречивы, то из экспериментальных данных $\Delta_r G(T)$ для реакции (R8) можно рассчитать термодинамические функции ($\Delta_r G$, $\Delta_r S$, $\Delta_r H$) реакции (R11), используя термодинамические свойства реакции (R8) как вспомогательные данные.

Фаза	Δ _f G°	$\Delta_{f} \mathrm{H}^{\mathrm{o}}$	S°	Ссылка
	Дж·моль-1	Дж·моль-1	Дж·моль-1·К-1	
Ag (cr)	0	0	42.677	(Barin, 1995)
Pd (cr)	0	0	37.823	(Barin, 1995)
Te (cr)	0	0	49.497	(Barin, 1995)
α-Ag ₂ Te	$-40170{\pm}130$	$-35050\pm\!\!130$	152.0 ± 2.0	(Voronin et al., 2017)
β-Ag ₂ Te	$-38560\pm\!930$	$-29490\pm\!\!1560$	165.2 ±4.1	(Voronin et al., 2017)

Таблица 26 – Термодинамические свойства элементов и теллуридов серебра при 298.15 К и давлении 1 бар

Результаты расчета термодинамических функций (Δ_r G, Δ_r S, Δ_r H) для реакции (R11), полученные в этой работе приведены в таблице 27. Так как измерения проводились как в равновесии с α -Ag₂Te, так и в реакции с участием β -Ag₂Te, то возможно получить два набора термодинамических свойств реакции (R11), а именно с использованием данных низкотемпературного тренда в сочетании с данными для α -Ag₂Te и с использованием данных высокотемпературного тренда в сочетании с очетании с данными для β -Ag₂Te. Различие в полученных данных объясняется небольшим расхождением в параметрах фазового перехода, полученных в данной работе и работе (Voronin et al, 2017), из которой были взяты термодинамические данные для модификаций теллурида серебра. Представляется целесообразным использовать средние значения, которые также приведены в таблице 27.

$\Delta_r G^o$	$\Delta_r H^o$	$\Delta_{ m r} { m S}$	Carrent
Дж·моль-1	Дж∙моль ⁻¹	Дж·моль-1·К-1	Ссылка
	- 4184		(Mills, 1974)
	22820		(Stolyarova and Osadchii, 2011),
	- 23820		(Stolyarova and Osadchii, 2013)
		10.55	(Gronvold et al., 1961),
		- 12.55	(Westrum et al., 1961)
20079			компиляция из
- 20079			предыдущих работ
	- 12000		(Eichler et al., 1990)
- 10578	- 14258	- 12.34	(Каржавин, 2011)
- 34900	- 28439	-21.67	(Mallika and Sreedharan, 1986
- 27526	- 33790	- 21.03	Настоящее исследование*
- 27751	- 34562	- 22.92	Настоящее исследование**
- 27639	- 34176	-21.98	среднее из *, **

Таблица 27 – Термодинамические параметры реакции PdTe + Te = PdTe₂ (R11)

* из расчётного низкотемпературного тренда

** расчёт из высокотемпературного тренда

В работе Mallika and Sreedharan (1986) приводятся результаты ЭДС измерений в твердотельных гальванических ячейках с разделенным газовым пространством с использованием стабилизированного (15 вес.% Y₂O₃) диоксида циркония со специфической кислород-ионной проводимостью. В качестве системы сравнения использовался кислород воздуха ($pO_2 = 0.21$ бар), а суммарными потенциалобразующими процессами являются реакции:

$$PdTe_2 + O_{2(gas)} = PdTe + TeO_2.$$
(R12)

$$Te_{(s,1)} + O_{2(gas)} = TeO_2$$
 (R13)

Разность реакций (R12) и (R13) даёт реакцию (R11), а, следовательно, разность уравнений зависимости ЭДС, исследованных равновесий, даёт температурную зависимость ЭДС реакции (R11), из которой рассчитаны термодинамические параметры этой реакции (таблица 27).

В таблице 27 также приведены: значения $\Delta_r H^o$, рассчитанные из данных справочника (Mills, 1974), статей (Stolyarova and Osadchii, 2011) и (Stolyarova and Osadchii, 2013), а также статьи (Eichler et al., 1990); величина ΔrS , рассчитанная из данных экспериментальных работ (Gronvold et al., 1961) и (Westrum et al., 1961); значение $\Delta_r G^o$, полученное компиляцией данных статей (Gronvold et al., 1961), (Westrum et al., 1961), (Stolyarova and Osadchii, 2011) и (Stolyarova and Osadchii, 2013); а также характеристики реакции (R11), рассчитанные из данных работы (Каржавин, 2011).

Из таблицы 27 видно, что даже для реакции (R11) данные сильно отличаются, за исключением результатов ЭДС-измерений данной работы и работы (Mallika and Sreedharan, 1986), различия в которых могут быть связаны с резким увеличением области гомогенности теллуридов палладия, особенно у монотеллурида, выше 700 К (Okamoto, 1992).

Результаты данной части работы опубликованы в статье (Kristavchuk et al., 2021 A).

5.6 Выводы к главе 5

В данной главе экспериментально были получены три температурные зависимости ЭДС равновесий в различных тройных системах (Ag-Pd-S, Ag-Pd-Se, Ag-Pd-Te) с участием синтетических минералов (<u>PdS (высоцкит)</u>-PdS₂, <u>Ag₂Se (науманит)</u>-PdSe₂-<u>Ag₂Pd₃Se₄ (кристанлеит)</u>, <u>PdTe (котульскит)</u>-PdTe₂ (меренскиит)).

Из полученных зависимостей ЭДС были рассчитаны температурные зависимости летучего компонента (S₂, Se₂, Te₂) над равновесиями с участием синтетических минералов.

По итогам главы на защиту выносится третье защищаемое положение:

Температурные зависимости фугитивности вполне подвижных компонентов для следующих равновесий:

 $2PdS + S_2(gas) = 2PdS_2, 325 < T, K < 497$ $3/2Ag_2Pd_3Se_4 + Se_2(gas) = 3/2Ag_2Se + 9/2PdSe_2, 425 < T, K < 644$ $2PdTe + Te_2(gas) = 2PdTe_2, 371 < T, K < 488.$

Выводы

1. Получены изотермические сечения фазовых диаграмм систем Ag-Pd-S, Ag-Pd-Se (при 530 °C и 430 °C) и Ag-Pd-Te (при 450 °C и 350 °C).

2. Описаны фазовые реакции, происходящие в данных системах при переходе между изотермами:

В системе Ag-Pd-S в интервале температур 530→430 °С происходят:

• перитектоидная реакция образования Ag_2PdS из смеси Ag_2S и Ag_2Pd_3S ,

• перитектоидная реакция образования $Ag_3Pd_{13}S_4$ из смеси Ag_2Pd_3S , Pd_3S и Pd_4S .

В системе Ag-Pd-Se в интервале температур $530 \rightarrow 430$ °C происходит эвтектическая реакция распада расплава L₂ на смесь Pd₁₇Se₁₅ss, AgPd₃Se и (Ag,Pd)₂₂Se₆.

В интервале температур 430→350 °С происходят:

• перитектоидная реакция образования $Ag_2Pd_3Se_4$ из смеси Ag_2Se , $PdSe_2$ и PdSe,

• эвтектоидная реакция распада Ag₆Pd₇₄Se₂₀ на смесь AgPd₃Se и Pd₄Se.

В системе Ag-Pd-Te в температурном интервале 450→350 °C происходит перитектоидная реакция образования Ag₄Pd₃Te₄ из смеси Ag₂Te, PdTe и Ag₂Pd₁₄Te₉.

Обнаружено, что некоторые халькогениды палладия растворяют в себе серебро: Pd₁₇Se₁₅ до 7 ат.% Ag; Pd₉Se₂ до 5 ат.% Ag; Pd₂₀Te₇ до 3.5 ат.% Ag; Pd₁₃Te₃ до 2 ат.% Ag.

3. Обнаружены новые трёхкомпонентные соединения: $(Ag,Pd)_{22}Se_6$, AgPd₃Se, Ag₆Pd₇₄Se₂₀, Ag₃Pd₁₃S₄, Ag_{0.5+x}Pd_{7.5-x}Te₃ и Ag_{2-x}Pd_{2+x}Te. У некоторых из них обнаружена и описана область гомогенности:

• (Ag,Pd)₂₂Se₆ – от 50 до 34 ат.% Ад при постоянном содержании Se;

• AgPd₃Se – от 21 до 16 ат.% Ад при постоянном содержании Se;

• Ag_{0.5+x}Pd_{7.5-x}Te₃ (0.02 < x < 0.83) и Ag_{2-x}Pd_{2+x}Te (0.18 < x < 0.24).

4. Для двух соединений в системе Ag-Pd-Se определены кристаллическая структура и транспортные свойства:

• AgPd₃Se – РаЗ (кубическая ячейка) с параметром элементарной ячейки а от 8.632(1) Å при 16 ат.% Ад до 8.6155(6) при 21 ат.% Ад;

• (Ag,Pd)₂₂Se₆ – Fm3m (гранецентрированная кубическая решетка) с параметром элементарной ячейки а от 12.2697(5) Å при 34 ат.% Ag до 12.4143(9) Å при 50 ат.% Ag.

Оба соединения в интервале от 80 К до 310 К имеют металлический характер проводимости, характерный для интерметаллидов.

Остальные соединения описаны частично.

5. Для трёх равновесий (по одному для каждой тройной системы) с участием синтетических минералов ЭДС-методом определена зависимость фугитивности летучего компонента от температуры:

- $2PdS + S_2(gas) = 2PdS_2$ в интервале 325 < T/K < 497lg $f S_{2(gas)} = (8.0 \pm 0.1) - (8.13 \pm 0.04) \cdot (1000/T), (325 < T/K < 444)$ lg $f S_{2(gas)} = (12.6 \pm 0.8) - (10.2 \pm 0.4) \cdot (1000/T), (451 < T/K < 497)$
- 3/2Ag₂Pd₃Se₄ + Se₂(gas) = 3/2Ag₂Se + 9/2PdSe₂ в интервале 425 < *T*/K < 644
 lgfSe_{2(gas)} = (7.7 ± 0.1) (8.52 ± 0.03) · (1000/T)
- 2PdTe + Te₂(gas) = 2PdTe₂ в интервале 371 < T/K < 488. lg f Te_{2(gas)} = (9.2 ± 0.1) - (11.44 ± 0.03) · (1000/T)

В результате работы были изучены фазовые диаграммы геологически важных трехкомпонентных систем Ag-Pd-S (Se, Te) в диапазоне температур 623– 800 К. В рассматриваемых системах было найдено 6 новых химических соединений. На основании фазовых диаграмм ЭДС-методом с серебропроводящим твердым электролитом была изучена фугитивность халькогена над тремя равновесиями.

Список условных обозначений

Е – ЭДС (электродвижущая сила) ячейки, мВ;

Т-температура, К;

T° = 298.15 К – стандартная температура;

 $\Delta_r G$, $\Delta_r H$ и $\Delta_r S$ – термодинамические параметры реакции (энергия Гиббса, энтальпия, энтропия, соответственно);

 $\Delta_f G^\circ$, $\Delta_f H^\circ$ и $\Delta_f S^\circ$ – стандартные термодинамические величины образования соединения из элементов;

 C_p° – стандартная теплоёмкость соединения;

 $\Delta_r C_p$ — изменение теплоемкости реакции при постоянном давлении; S° — абсолютная энтропия;

α-, β-, γ- – низко-, средне- и высокотемпературные полиморфные модификации в исследуемом температурном диапазоне;

cr – кристаллическое состояние вещества; L, liq – жидкость, расплав; gas – газообразное состояние вещества;

R² – коэффициент детерминации экспериментальных данных;

k – количество экспериментальных точек;

n – количество электронов, участвующих в электрохимическом процессе;

 $F = 96485.34 \text{ Кл} \cdot \text{моль}^{-1} - \text{постоянная Фарадея.}$

Благодарности

Автор настоящей работы выражает глубочайшую признательность руководителю д.х.н. Чарееву Д.А. и заведующему лабораторией электрохимии, термодинамики и физики минералов ИЭМ РАН д.х.н. Осадчему Е.Г. за ценные консультации и предоставление лабораторной базы, а также доктору Анне Вымазаловой из Чешской Геологической Службы за постановку задачи и неоценимую помощь в работе; сотрудникам лаборатории электрохимии, термодинамики и физики минералов ИЭМ РАН: к.х.н. Воронину М.В. и к.х.н. Бричкиной Е.А. за помощь в работе, инженеру - электронику Жданову Н.Н. за техническое сопровождение работы; коллегам из Чешской Геологической Службы доктору Милану Драбеку и доктору Франтишеку Лауфеку за весьма полезные консультации и помощь в работе; сотрудникам других подразделений ИЭМ РАН: д.г-м.н. Котельникову А.Р. за внутреннюю рецензию работы, Докиной Т.Н. за проведение рентгенофазового анализа, к.т.н. Вирюс А.А., к.г-м.н. Ковальскому А.М., к.х.н. Ванну К.В. и Некрасову А.Н. за проведение локального рентгеноспектрального микроанализа, Рябиной Е.Л. за подготовку образцов для локального рентгеноспектрального микроанализа; также сотрудникам кафедры низких температур Физического факультета МГУ им. М.В. Ломоносова Васильчиковой Т.М. за проведение измерений транспортных свойств, д.ф-м.н. О.С. Волковой и д.ф.-м.н. Васильеву А.Н. за предоставление лабораторной базы.

Приложения

Приложение 1. Аналитическая зависимость межплоскостного расстояния от состава сплава

В статье (Karakaya and Thompson, 1988) не оказалось аналитического вида зависимости кривой отклонения параметра решетки от состава сплава. Однако нам требовалась данная зависимость для вычисления состава сплава исходя из межплоскостных расстояний, которые могут быть получены из рентгенограмм исследуемых сплавов. Для получения нужных зависимостей были предприняты следующие действия:

– для начала был аппроксимирован аналитический вид кривой третьего порядка, изображенной на Рисунке 26 и получена следующая зависимость:

$$f(\mathbf{x}) := \frac{1}{\left[2 \cdot \left(\frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}}\right)^{2}\right]} \cdot \left[-2 \cdot \mathbf{a} \cdot \frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}} + 2 \cdot \mathbf{x} \cdot \frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}} + \frac{-\mathbf{a}^{2}}{\mathbf{Dm}} + \left[-4 \cdot \mathbf{a} \cdot \frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}} \cdot \frac{-\mathbf{a}^{2}}{\mathbf{Dm}} + 4 \cdot \mathbf{x} \cdot \frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}} \cdot \frac{-\mathbf{a}^{2}}{\mathbf{Dm}} + \left(\frac{-\mathbf{a}^{2}}{\mathbf{Dm}}\right)^{2} + 4 \cdot \left(\frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}}\right)^{2} \cdot \mathbf{a}^{2}\right] \quad \mathbf{x} = \frac{1}{\left[2 \cdot \left(\frac{\mathbf{M} - \mathbf{a}}{\mathbf{Dm}}\right)^{2}\right]} \cdot \mathbf{a}^{2}$$

Зависимость f(x) является решением зависимости F(D) относительно D где F(D)= $a \pm \sqrt{b + c \cdot D} + d \cdot D$, a = 50 – центр начала координат, D_m = 0.001 – величина максимума отклонения от закона Вегарда, M = 40 – положение максимума функции.

В результате получена функция добавки:

$$\frac{-7.5 - \frac{x}{10} + 5 \cdot \sqrt{2.25 + \frac{x}{10}}}{1000},$$

где x – состав сплава (% содержания Pd)

$$\frac{(pd-ag)}{100} \cdot x + ag + \frac{7.5 + \frac{x}{10} + -5 \cdot \sqrt{2.25 + \frac{x}{10}}}{1000} - Dss = 0$$

Dss – параметр решетки сплава, рассчитанный из рентгенограммы.

Аналитическое решение данного уравнения возможно с использованием аппарата Mathcad:

 $x(\text{Dss}) = 4451.1 - 100 \cdot \sqrt{1.1854 - 2.79056 \cdot \text{Dss}} - 10373.4 \cdot \text{Dss}$

- формула для вычисления состава сплава (ат.% Pd) исходя из межплоскостного расстояния, которое находится из рентгенограммы сплава (в нанометрах).

Bec. %		Ag				Pd				Se							
N⁰	Средн.	Min.	Max.	Отклон.	Средн.	Min.	Max.	Отклон.	Средн.	Min.	Max.	Отклон.	Сумма	Ag	Pd	Se	$\Sigma(Ag,Pd)$
$Ag_2Pd_3Se_4$																	
A9	25.46	25.05	25.86	0.34	37.94	37.31	38.57	0.54	36.40	36.05	36.41	0.17	99.79	2.02	3.05	3.94	
A12	25.39	25.36	25.42	0.02	37.94	37.54	38.17	0.28	35.82	35.72	35.95	0.09	99.15	2.03	3.07	3.90	
A14	24.66	23.91	25.15	0.54	37.89	37.75	38.07	0.14	36.11	35.76	36.69	0.42	98.65	1.97	3.08	3.95	
A18	23.77	23.21	24.21	0.42	38.03	37.59	38.72	0.49	37.07	37.05	37.11	0.02	98.87	1.89	3.07	4.03	
								(Ag,Pd	$)_{22}Se_6$								
A10	40.89	40.45	41.67	0.45	42.42	41.83	42.84	0.37	16.01	15.85	16.16	0.11	99.32	10.82	11.39	5.79	22.21
A13	47.64	46.58	48.50	0.33	35.16	34.76	35.40	0.28	16.47	16.20	16.99	0.37	99.27	12.61	9.43	5.96	22.04
A15	48.41	48.22	49.59	0.38	33.84	33.22	34.45	0.45	16.63	16.00	17.22	0.44	98.88	12.86	9.11	6.03	21.97
A20	55.89	56.07	56.30	0.11	27.30	27.08	27.67	0.30	16.05	16.18	16.23	0.03	99.77	14.83	7.32	5.85	22.16
A21	35.12	34.75	35.49	0.31	47.89	47.42	48.08	0.20	16.37	16.34	16.39	0.03	99.38	9.28	12.82	5.90	22.10
A22	34.22	33.94	34.50	0.28	49.38	49.36	49.40	0.02	16.43	16.37	16.48	0.05	100.03	8,99	13,33	5,88	22,11
A24	39.26	38.62	39.90	0.64	44.44	44.29	44.58	0.15	16.64	16.26	17,01	0.38	100.33	10,13	11,87	6,02	21.99
A27	35.65	35.61	35.70	0.05	47.45	47.04	47.86	0.41	16.24	16.24	16.25	0.00	99.35	9,42	12,71	5,86	22.14
A30	49.04	48.64	49.23	0.29	33.29	32.79	33.69	0.37	16.13	16,05	16.22	0.07	98.47	13,10	9,01	5,89	22,11
A32	36.47	35.63	36.77	0.34	47.38	45.31	46.51	0.09	16.00	15.97	16.02	0.02	99.85	12.49	9.67	5.85	22.15
A35	47.42	47.20	47.64	0.22	35.59	35.39	35.80	0.21	16.62	16.43	16.82	0.19	99.64	12,50	9,51	5,99	22,01
A36	48.08	47.71	48.75	0.48	35.30	34.98	35.65	0.27	16.52	16.45	16.62	0.07	99.90	12,65	9,41	5,94	22,06

Приложение 2. Составы соединений в системе Ag-Pd-Se, полученные методом РСМА

AgPd ₃ Se																	
A11	21.46	21.35	21.55	0.08	62.98	62.47	63.20	0.30	15.36	15.23	15.63	0.16	99.80	1,01	3.00	0.99	
A19	21.14	21.00	24.27	0.12	63.85	63.33	64.04	0.31	15.02	14.88	15.13	0.10	100.00	0.99	3.04	0.96	
A21	21.42	21.35	21.55	0.09	62.73	62.47	63.16	0.30	15.39	15.33	15.63	0.18	99.54	1.01	3.00	0.99	
A22	21.35	21.43	21.52	0.04	62.53	63.07	63.20	0.07	15.36	15.23	15.26	0.01	99.86	1.01	3.01	0.98	
A23	18.91	18.72	19.09	0.15	65.42	65.07	65.81	0.30	15.50	15.45	15.59	0.06	99.83	0.89	3.12	1.00	
A25	18.82	18.37	19.05	0.32	65.93	65.65	66.13	0.20	15.24	15.14	15.34	0.08	99.99	0.88	3.14	0.98	
A26	18.36	18.18	18.53	0.17	66.28	66.19	66.37	0.09	15.19	15.17	15.21	0.02	99.82	0.86	3.16	0.98	
A27	21.64	21.35	21.92	0.29	63.13	63.11	63.16	0.03	15.28	15.23	15.33	0.05	100.05	1.02	3.00	0.98	
A28	18.35	18.18	15.52	0.17	65.72	66.16	65.28	0.44	15.16	15.15	15.17	0.01	99.23	0.87	3.15	0.98	
A32	21.44	21.35	21.53	0.09	62.98	61.80	63.16	0.18	15.24	15.15	15.33	0.09	99.72	1.02	3.00	0.99	
A34	18.47	18.37	18.53	0.07	66.06	65.65	66.37	0.30	15.20	15.15	15.25	0.04	99.73	0.87	3.15	0.98	
								Ag ₆ Pd	74Se ₂₀							i	
A34	6.70	6.44	6.91	0.14	77.85	77.28	78.47	0.36	15.25	15.21	15.34	0.04	99.80	6.29	74.14	19.57	
								Ag	Se								
A12	73.33	72.95	73.52	0.27	0.16	0.10	0.28	0.08	26.08	26.01	26.23	0.10	99.58	2.02		0.98	
A14	73.27	73.01	73.53	0.26	н.о.				25.85	25.51	26.19	0.34	99.23	2.01		0.99	
A16	73.14	72.94	73.52	0.27	0.22	0.10	0.28	0.08	26.15	26.01	26.24	0.10	99.52	2.01	0.01	0.98	
A20	72.84	72.97	72.99	0.01	н.о.				26.46	26.48	26.49	0.01	99.45	2.01		0.99	
A35	74.17	72.97	74.87	0.70	н.о.				26.10	25.75	26.48	0.36	100.31	2.02		0.98	
A36	72.54	72.97	73.02	0.02	0.10				26.41	26.48	26.51	0.02	99.49	2.00		1.00	
	Ag–Pd																
A20	79.95	79.49	80.40	0.46	19.48	19.43	19.53	0.05	0.65	0.62	0.68	0.03	100.08	0.79	0.20	0.01	
------------------	--------------------	-------	-------	------	-------	-------	-------	------	-------	-------	-------	------	--------	------	-------	-------	--
A26	30.59	30.40	30.77	0.15	67.91	67.40	68.29	0.38	1.01	1.00	1.01	0.01	99.52	0.30	0.68	0.01	
A27	63.68	63.67	63.70	0.01	35.82	35.47	36.14	0.34	0.50	0.46	0.50	0.01	100.19	0.63	0.36	0.01	
A30	72.49	72.34	72.74	0.25	25.75	25.57	25.93	0.18	0.45	0.42	0.46	0.02	98.69	0.73	0.26	0.01	
$Pd_{17}Se_{15}$																	
A13	7.07	7.55	7.86	0.16	55.31	54.72	55.80	0.45	36.14	35.90	36.48	0.25	98.52	2.01	15.95	14.04	
A15	6.08	5.93	6.23	0.15	56.29	56.20	56.72	0.26	36.56	36.46	37.40	0.47	98.95	1.73	16.15	14.13	
A17	5.15	5.84	5.46	0.22	56.26	56.00	56.80	0.30	37.06	36.91	37.18	0.09	98.47	1.46	16.18	14.36	
A18	7,88	7.82	7.94	0.06	54.05	53.59	54.51	0.46	38.48	38.30	38.65	0.18	99.41	1.93	15.35	14.72	
A22	5.70	5.51	5.80	0.13	57.35	57.30	57.39	0.04	36.44	36.35	36.58	0.10	99.49	1.60	16.38	14.02	
A23	5.10	4.68	5.45	0.32	57.34	57.14	57.55	0.17	37.03	36.81	37.30	0.20	99.49	1.44	16.34	14.22	
A24	7.41	5.93	7.88	0.48	55.96	55.69	56.23	0.27	36.56	36.47	36.64	0.09	98.92	1.81	16.05	14.13	
A25	4.94	4.68	5.20	0.26	57.45	57.34	57.55	0.10	37.14	36.98	37.30	0.16	99.53	1.39	16.36	14.25	
A29	2.52	2.38	2.79	0.19	58.51	58.26	58.96	0.32	38.00	37.92	38.07	0.06	99.04	0.71	16.69	14.61	
A31	4.54	4.40	4.68	0.14	57.99	57.81	58.17	0.18	36.34	36.10	36.59	0.25	98.87	1,31	16.73	13.97	
A35	7.16	6.02	7.34	0.13	56.31	55.84	56.60	0.33	37.17	36.50	37.58	0.48	99.64	1.73	16.02	14.25	
A36	7.01	7.16	7.85	0.16	56.17	56.54	55.79	0.38	37.00	36.97	37.03	0.03	100.17	1.99	15.98	14.19	
	$Pd_{34}Se_{11}$																
A23	н.о.				80.71	80.58	80.85	0.14	19.07	19.01	19.12	0.05	99.78		34.14	10.86	
A25	0.29	0.22	0.38	0.07	81.34	81.27	81.46	0.09	18.78	18.76	18.79	0.01	100.41	0.12	34.23	10.65	
	Pd ₄ Se																
A26	н.о.				84.61	83.88	85.67	0.55	15.29	15.02	15.40	0.13	99.91		4.02	0.98	
A34	н.о.				84.65	84.32	85.15	0.31	15.33	15.15	15.51	0.12	99.98		04.02	0.98	

Pd_7Se_2																	
A28	0.12	0.06	0.18	0.06	82.41	82.03	82.79	0.38	16.97	16.96	16.98	0.01	99.50	0.01	7.04	1.95	
Pd ₇ Se ₄																	
A31	н.о.				69.90	69.44	70.98	0.47	29.45	29.19	29.77	0.10	99.71		7.03	3.97	
	PdSe ₂																
A12	н.о.				40.21	39.96	40.48	0.21	57.95	57.96	58.18	0.19	98.18		1.02	1.98	
A16	н.о.				40.92	40.33	41.63	0.54	58.18	57.89	58.64	0.33	99.17		1.03	1.97	
A29	н.о.				41.21	40.78	41.63	0.43	58.27	57.89	58.64	0.38	99.57		1.02	1.98	
PdSe																	
A33	н.о.				57.70	57.19	58.13	0.36	41.85	41.65	42.15	0.19	99.55		1.01	0.99	
	Pd_9Se_2																
A3	н.о.				85.10	58.04	85.17	0.07	14.08	13.99	14.14	0.08	99.17		9.00	2.00	

Примечание: н.о. – ниже предела обнаружен

Список цитируемой литературы

В.Д. Бегизов, Е.В. Баташев (1978) Платиновые минералы плутона Луккулайсваара. // ДАН, 243, 5, 1265-1268

М. В. Воронин, Е. Г. Осадчий (2011) Определение термодинамических свойств селенида серебра методом гальванической ячейки с твердыми и жидкими электролитами // Электрохимия, том 47, № 4, с. 446–452

Генкин, А. Д., Журавлев, Н. Н., Смирнова, Е. М. (1963). Мончеит и котульскитновые минералы и состав майченерита. Зап. ВМО, 92(1), 33-50.

Евстигнеева Т.Л., Трубкин Н.В. (2006) Экспериментальное изучение фазовых соотношений в системе Pd-Te и вопрос о минерале теларгпалите «Вестник отделения наук о Земле PAH» No 1(24)2006, ISSN 1819–6586

Каржавин В.К. (2011) Термодинамические величины элементов и соединений Примеры их практического применения. Апатиты: Изд. Кольского научного центра РАН, 160 с.

Криставчук, А. В., Вымазалова, А., Осадчий, Е. Г., Викентьев, И. В., Чареев, Д. А., Бортников, Н. С. (2019). Фугитивность Se₂ (ГАЗ) в системах с благородными металлами: кристанлеит Ag₂Pd₃Se₄-науманнит Ag₂Se₋β-PdSe₂ и любероит Pt₅Se₄-судовиковит PtSe₂. Доклады Академии наук (Т. 485, № 6, 720-725). Федеральное государственное бюджетное учреждение" Российская академия наук"

Медведева З.С., Клочко М.А., Кузнецов В.Г., Андреева С.Н. (1961) Диаграмма состояния системы палладий-теллур. Журн. неорг. химии, 6(7), 1737-1739

Третьяков Ю.Д., (1978) Твердофазные реакции, М.: Химия,

Ширяев А.А. (2008) Магнетокалорический эффект в интерметаллических сплавах Гейлера Дипломная работа / МГУ им. М.В. Ломоносова. – М.

Ames D.E., Kjarsgaad I.M., McDonald A.M. and Good, D.J. (2017) Insights into the extreme PGE enrichment of the W Horizon, Marathon Cu-Pd deposit, Coldwell

Alkaline Complex, Canada: Platinum-group mineralogy, compositions and genetic implications. Ore Geology Reviews, 90, 723-747.

Barin, I. (1995) Thermochemical Data of Pure Substances // VCH, vol.1, 2

Barkov, A.Y., Martin, R.F., Tarkian, M., Poirier, G. and Thibault, Y. (2001) Pd–Ag tellurides from a Cl-rich environment in the Lukkulaisvaara layered intrusion, northern Russian Karelia. The Canadian Mineralogist, 39, 639–653.

Brese, N. E., Squattrito, P. J., and Ibers, J. A. (1985). Reinvestigation of the structure of PdS. Acta Crystallographica Section C: Crystal Structure Communications, 41(12), 1829-1830.

Cabri, L.J. (1965) Discussion of "Empressite and stuetzite redefined" by R.M. Honea. American Mineralogist, 50, 795–801.

Chattopadhyay, G., Bhatt, Y.J. and Khera, S.K. (1986) Phase diagram of the Pd–Te system. Journal of Less Common Metals, 123, 251–266

Eichler B., Rossbach H., Gäggeler H., (1990) Thermochemical characterization of binary tellurium-metal systems, Journal of the Less Common Metals 163(2) 297-310

EI-Boragy M. and Schubert IC, (1971) Some Variants of the Ni-As Family in Alloys of Palladium with B Elements, Z. Metallkd., 62, 314-315 in German. (Equi Diagram; Experimental)

Emmons R.C., Stockwell C.H. and Jones R.H.B. (1926) Argentite and acanthite. American Mineralogist, 11, 326-328.

Geller S., (1962) The Crystal Structure of Pd₁₇Se₁₅, // (1876) *ActaCrystallogr* 15, 713-721 H. Rossler, // Liebigs Ann., 180, 244

Groeneveld Meijer, W.O.J. (1955) Synthesis, structures, and properties of platinum metal tellurides. American Mineralogist, 40, 646–657.

Grokhovskaya, T.L., Distler, V.V., Klyunin, S.F., Zakharov, A.A. and Laputina, I.P. (1992) Lowsulfide platinum group mineralization of the Lukkulaisvaara pluton, northern Karelia. International Geology Review, 34, 503–520.

Grokhovskaya, T.L., Bakaev, G.F., Sholokhnev, V.V., Lapina, M.I., Muravitskaya, G.N. and Voitekhovich, V.S. (2003) The PGE ore mineralization in the Monchegorsk igneous layered complex (Kola Peninsula, Russia). Geologiya Rudnykh Mestorozhdenii, 45, 329–352.

Gronvold F. and Rost E., (1956) On the Sulfides, Selenides, and Tellurides of Palladium, // ActaChem. Scand., 10(10), 1620-1634

Grønvold, F., and Røst, E. (1957). The crystal structure of PdSe₂ and PdS₂. Acta Crystallographica, 10(4), 329-331.

Gronvold F., Thurmann-Moe T., Westrum E.F., Chang E., (1961) Low-Temperature Heat Capacities and Thermodynamic Functions of Some Platinum and Palladium Group Chalcogenides. I. Monochalcogenides; PtS, PtTe, and PdTe, The Journal of Chemical Physics 35 1665-1669

Grønvold, F. & Røst, E. (1962) The crystal structure of Pd₄Se and Pd₄S. Acta Crystallographica 15, 11–13.

Honea, R.M. (1964) Empressite and stützite redefined. American Mineralogist, 49, 325–338.

Hu, R., Gao, M. C., Doğan, Ö. N., King, P., & Widom, M. (2010). Thermodynamic modeling of the Pd–S system supported by first-principles calculations. Calphad, 34(3), 324-331.

Ijjaali, I. and Ibers, J.A. (2001) Crysral structure of palladium selenide, PdSe. Zeitschrift für Kristallographie 216, 485–486.

Ipser, H. and Schuster, W. (1986) Transition-metalchalcogen systems. X: The Pd-Te phase diagram. Journal of Less-Common Metals, 125, 183–195.

Janetzky, M. and Harbrecht, B. (2006) Crystal growth, structure and properties of the palladium-rich telluride. Zeitschrift für Anorganische und Allgemeine Chemie, 632, 837–844.

Karakaya and W. T. Thompson, (1988) The Ag-Pd (Silver-Palladium) system // *Journal of Phase Equilibria*, Vol. 9, N 3.

Karakaya, I., and Thompson, W. T. (1991). The Ag-Te (silver-tellurium) system. Journal of phase equilibria, 12(1), 56-63.

Kelm, M., Gortzen, A., Kleykamp, H. and Pentinghaus, H. (1990) On the constitution of the Pd-Te system up to 28 at.% Te. Journal of the Less Common Metals, 166, 125–133.

Kim, W.S. (1986) Two new synthetic phases, Pd₁₇Te₄ and Pd₇Te₃ and new phase relations of the Pd-Te system. Journal of the Geological Society of Korea, 22, 146–160.

Kim, W.S., Chao, G.Y. and Cabri, L.J. (1990) Phase relations in the Pd-Te system. Journal of the Less Common Metals, 162, 61–74.

Kiukkula, K. and Wagner, C. (1957) Measurements on galvanic cells involving solid electrolytes. Journal of Electrochemical Society, 104, 385–386.

Kjekshus A., (1960) High Temperature X-Ray Study of the Thermal Expansion of Pd₉Se₈ and Rh₉S₈, // *ActaChem Scand*, 14(7), 1623-1626

Kovalenker, V.A., Genkin, A.D., Evstigneeva, T.L., Laputina, I.P. (1974) Telargpalite, a new mineral of palladium, silver and tellurium, from the copper-nickel ores of the Oktyabr deposit. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 103(5), 595-600.

Kracek, F.C., Ksanda, C.J. and Cabri, L.J. (1966) Phase relations in the silver-tellurium system. American Mineralogist, 51, 14–28.

Kristavchuk, A. V., Zabolotskaya, A. V., Voronin, M. V., Chareev, D. A., and Osadchii, E. G. (2021). Temperature dependence of tellurium fugacity for the kotulskite (PdTe)–merenskyite (PdTe₂) equilibrium determined by the method of a solid-state galvanic cell. Physics and Chemistry of Minerals, 48(4), 1-9

Kullerud, G. (1971) Experimental techniques in dry sulfide research. In: Ulmer, G.C. (ed.) Research Techniques for High Pressure and High Temperature, Spinger-Verlag, New York, pp. 288-315

Laufek F., Vymazalová A., Chareev D.A., Kristavchuk A.V., Linn Q., Drahokoupil J., Vasilchikova T.M., (2011) Crystal and electronic structure study of AgPd₃Se, Journal of Solid State Chemistry 184, 2794–2798

F. Laufek, A. Vymazalová, D.A. Chareev, A.V. Kristavchuk, J. Drahokoupil and M.V.
Voronin (2013). Synthesis and crystal structure of (Ag,Pd)₂₂Se₆. Powder Diffraction, 28, pp 13-17

Laufek, F., Vymazalová, A., Drábek, M., Drahokoupil, J. and Dušek, M. (2013) Crystallographic study of the ternary system Pd-Ag-Te. Materials Structure, 20, 88–89 [conference abstract].

Luc, W. and Jiao, F. (2017) Nanoporous Metals as Electrocatalysts: State-of-the-Art, Opportunities, and Challenges.ACS Catal. 7, 5856–5861.

Mallika C., Sreedharan O.M., (1986) Thermodynamic activity of PdTe – PdTe₂ alloys, Journal of Materials Science Letters 5 915–916

Mandarino J. A. (1999) Chrisstanleyite Ag₂Pd₃Se₄: Abstr. 20th Annual FM-TGMS-MSA Mineralogical Symposium, Mexico, Febr. 13, 1999. // Mineral. Rec. 30, № 2. C. 157

Massalski T.B., (ed.) (1992): "Binary Alloy Phase Diagrams", Second Edition, The Materials Information Society, ASM International, Materials Park, Ohio

Matkovic T. and Schubert K., (1977) Crystal Structure of Pd₉Te₄, J. Less-Common Met., 58, P39-P46 in German. (Equi Diagram, Crys Structure; Experimental)

Matkovic T. and Schubert K., (1978) Crystal Structure of Pd₇Se₄, J. Less-Common Met., 59(2), P57-P63 in German. (Equi Diagram, Crys Structure; Experimental)

Matthias B.T. and Geller S., (1958) Superconductivity in the Pd-Se System, // Phys. Chem. Solids, 4, 318-319

McDonald, A.M., Cabri, L.J., Stanley, C.J., Good, D.J., Redpath, J., Lane, G., Spratt, J., Ames, D.E. (2015) Coldwellite, Pd₃Ag₂S, a new mineral species from the Marathon deposit, Coldwell Complex, Ontario, Canada. The Canadian Mineralogist: 53: 845-857.

Mills K. C. and Richardson M. J., (1973) The heat capacity of Cu2Te (c), CuTe (c), Ag2Te (c) And Ag1. 64 Te (c), Thermochimica Acta 6(5) 427-438

Mills K. C., (1974) Thermodynamic data for inorganic sulphides, selenides and tellurides,

Mohr P. J., Newell D. B., Taylor B. N., (2016) CODATA recommended values of the fundamental physical constants: 2014, Journal of Physical and Chemical Reference Data 45(4) 043102

Moser L. and Atynski K., (1924) Preparation of Selenides from Hydrogen Selenide and Metallic Salt Solutions, // Monatsh. Chertt, 45, 235-250

Nasar A. and Shamsuddin M. // (1997) Metall. Mater. Trans. B. V. 28B. P. 519

Niwa, K., Yokokawa, T., and Isoya, T. (1962). Equilibria in the PdS–H₂–Pd₄S–H₂S and Pd₄S–H₂–Pd–H₂S systems. Bulletin of the Chemical Society of Japan, 35(9), 1543-1545.

Okamoto H. // (1992) J. of Phase Equilibria and Diffusion, 13, № 1, 69-72

Olin A., Nolang B., Ohman L.-O., Osadchii E. G., Rosen E., (2005) *Chemical thermodynamics of Selenium*, Nuclear Energy Agency Data Bank, Organisation for Economic Co-operation and Development, Ed., vol. 7, *Chemical thermodynamics,* North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 332

Olsen T., Rost E., and Gronvold E., (1979) Phase Relationships of Palladium Selenides, // Acta Chem Scand. A, 33(4), 251-256.

Orsoev, D.A., Rezhenova, S.A., Bodanova, A.N. (1982) Sopcheite, Ag₄Pd₃Te₄, a new mineral from copper-nickel ores of the Monchegorsk pluton. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva: 111(1): 114-117.

Osadchii E.G., Chareev D.A., (2006) Thermodynamic studies of pyrrhotite pyrite equilibria in the Ag-Fe-S system by solid-state galvanic cell technique at 518-723 K and total pressure of 1 atm., Geochimica et Cosmochimica Acta 70(22) 5617-5633

Osadchii E. G., Echmaeva E. A., (2007) The system Ag-Au-Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique, American Mineralogist 92 640–647

Paar W.H., Roberts A.C., Criddle A.J., Topa D., (1998) A new mineral, chrisstanleyite, Ag₂Pd₃Se₄, from Hope's Nose, Torquay, Devon, England // *Mineralogical Magazine*, Vol. 62, 257-264

Polotnyanko, N. A., Tyurin, A. V., Chareev, D. A., and Khoroshilov, A. V. (2020). Heat Capacity and Thermodynamic Functions of PdS. Inorganic Materials, 56(7), 683-689.

Raub E., Wullhorst B. and Plate W. (1954) Über die Reaktion von Silber-PalladiumLegierungen mit Schwefel bei erhöhter Temperatur. Zeitschrift für Metallkunde, 45, 533–537.

Roessler F., (1895) Synthesis of Earth Minerals and Analogous Metal Compounds by Dissolution and Crystallization of Molten Metals, // Z.Anorg. Chem, 9, 31-77

Rost, E., and Vestersjo, E. (1968). THE CRYSTAL STRUCTURE OF THE HIGH-TEMPERATURE PHASE PD 3 S. Acta Chem Scand, 22(3), 819-826.

Sato, S., Takabatake, T., & Ishikawa, M. (1989) Structures of superconducting palladium selenides, Pd₇Se₂ and Pd₃₄Se₁₁. Acta Crystallographica C45, 1–3.

Schneider, J. and Schulz, H. (1993) X-ray powder diffraction of Ag₂Te at temperatures up to 1123 K. Zeitschrift für Kristallographie, 203, 1–15.

Schubert K., Breimer H., Burkhardt W., Gunzel E., I-Iaufler R., Lukas H.L., Vetter H., Wegst L, and Wilkens M., (1957) Some Structural Data on Metallic Phases II, // *Naturwissenschaflen*, 44(7), 229-230

Sharma R.C., Chang Y.A., (1986) The Ag-S (Silver-Sulfur) System // Bulletin of Alloy Phase Diagrams Vol. 7 No. 3 p. 263-269.

Simon G., Essene E. J., (1996) Phase relations among selenides, sulfides, tellurides, and oxides; I, Thermodynamic properties and calculated equilibria, Economic Geology 91(7) 1183-1208

Sluzhenikin S.F. and Mokhov A.V. (2015) Gold and silver in PGE-Cu-Ni and PGE ores of the Noril'sk deposit, Russia. Mineralium Deposita 50, 465-492.

Sluzhenikin S.F., Kozlov V.V., Stanley C.J., Lukashova M.I. and Dicks K. (2018) Vymazalováite, Pd₃Bi₂S₂, a new mineral from Noril'sk-Talnakh deposit, Krasnoyarskiy region, Russia. Mineralogical Magazine 82(2), 367-373.

Stolyarova T. A., Osadchii E. G., (2011) Standard Thermodynamic Properties of Pd and Pt Ditellurides, Geochemistry International 49(10) 1045–1049.

Stolyarova T. A., Osadchii E. G., (2013) Enthalpy of formation of platinum and palladium monotellurides from the elements, Geochemistry International 51(10) 852–854

Takabatake T., Ishikawa M., and Jorda J.L, (1987) Superconductivity and Phase Relations in the Pd-Se System, // *J. Less-CommonMet.*, 134, 79-89.

Thomassen L., "Crystal Structures of Some Binary Alloys of Platinum Metal," (1929) Z. Phys. Chem. B, 2(5-6), 349-379 in German. (Equi Diagram: Experimental)

Voronin M. V., Osadchii E. G., Brichkina E. A., Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O, Physics and Chemistry of Minerals 44(9) (2017) 639-653

Vymazalová, A. and Drábek, M. (2010) The system Pd-Sn-Te at 400°C and mineralogical implications. I. The binary phases. The Canadian Mineralogist, 48, 1041–1050.

Vymazalová, A., Chareev, D. A., Kristavchuk, A. V., Laufek, F., and Drábek, M. (2014). THE Ag–Pd–Se SYSTEM: PHASE RELATIONS INVOLVING MINERALS AND POTENTIAL NEW MINERALS. The Canadian Mineralogist, 52(1), 77-89.

Vymazalová, A., Grokhovskaya, T.L., Laufek, F. and Rassulov, V.A. (2014) Lukkulaisvaaraite, Pd₁₄Ag₂Te₉, a new mineral from Lukkulaisvaara intrusion, northern Russian Karelia, Russia. Mineralogical Magazine: 78: 1743-1754. Vymazalová, A., Laufek, F., Kristavchuk, A. V., Chareev, D. A., and Drábek, M. (2015). The system Ag–Pd–Te: phase relations and mineral assemblages. Mineralogical Magazine, 79(7), 1813-1832.

Vymazalová A., Laufek F., Sluzhenikin S.F., Stanley C.J., Kozlov V.V., Chareev D.A. and Lukashova M.L. (2017): Kravtsovite, PdAg₂S, a new mineral from Noril'sk - Talnakh deposit, Russia. European Journal of Minerlogy, 29(4), 597-602.

Vymazalová, A., and Chareev, D. A. (2018). Experimental aspects of Platinumgroup minerals. –Chapter 10 in book: «Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time»; SK Mondal and WL Griffin.

Vymazalová A., Laufek F., Sluzhenikin S.F., Kozlov V.V., Stanley C.J., Plášil J., Zaccarini F., Garuti G. and Bakker R. (2018) Thalhammerite, Pd₉Ag₂Bi₂S₄, a new mineral from the Talnakh and Oktyabrsk deposits, Noril'sk region, Russia. Minerals, 8 (8), 339

Vymazalová, A., Laufek, F., Kristavchuk, A. V., and Chareev, D. A. (2020). The system Pd–Ag–S: phase relations and mineral assemblages. Mineralogical Magazine, 84(1), 125-130.

Weibke, F., and Laar, J. (1935). Über die niederen Sulfide des Palladiums Das Zustandsdiagramm des Systems Pd–PdS. Zeitschrift für anorganische und allgemeine Chemie, 224(1), 49-61.

Westrum E. F., Carlson H. G., Gronvold F., Kjekshus A., Low-Temperature Heat Capacities and Thermodynamic Functions of Some Palladium and Platinum Group Chalcogenides. II. Dichalcogenides; PtS₂, PtTe₂, and PdTe₂, The Journal of Chemical Physics 35 (1961) 1670

Wopersnow, W. and Schubert, K. (1977) Kristallstrtuktur von Pd₂₀Sb₇ und Pd₂₀Te₇. Journal of the Less Common Metals, 51, 35–44 [in German].

Zhang, J. and Li, C. M. (2012) Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chemical Society Reviews 41, 7016–7031.

Zubkov, A., Fujino, T., Sato, N., & Yamada, K. (1998). Enthalpies of formation of the palladium sulphides. The Journal of Chemical Thermodynamics, 30(5), 571-581.